Regulatory Role of Cannabinoid Receptor 1 in Stress-Induced Excitotoxicity and Neuroinflammation

 “Exposure to stress elicits excitoxicity and neuroinflammation in the brain, contributing to cell death and damage in stress-related neurological and neuropsychiatric diseases. The endocannabinoid system is present in stress-responsive neural circuits and has been proposed as an endogenous neuroprotective system activated in some neuropathological scenarios to restore homeostasis. To elucidate the possible regulatory role of cannabinoid receptor 1 (CB1) in stress-induced excitotoxicity and neuroinflammation, both genetic and pharmacological approaches were used alternatively… These multifaceted neuroprotective effects suggest that CB1 activation could be a new therapeutic strategy against neurological/neuropsychiatric pathologies with HPA axis dysregulation and an excitotoxic/neuroinflammatory component in their pathophysiology.”

“Antiinflammatory Effects Elicited by CB1 Activation. Mechanisms Involved”

“In general, ECS has been proposed as an endogenous protective system against excessive inflammatory/immune responses in multiple CNS pathologies. Our following studies were aimed at clarifying the particular role of CB1 as a possible regulator of stress-induced inflammatory response.”

“In summary, the multifaceted neuroprotective effects described here suggest that CB1 activation is an attractive therapeutic strategy against diverse neuropsychiatric pathologies with HPA axis dysregulation and an excitotoxic/neuroinflammatory component in their pathophysiology.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3055736/

Cannabinoids as Therapeutic Agents for Ablating Neuroinflammatory Disease

“Cannabinoids have been reported to alter the activities of immune cells in vitro and in vivo. These compounds may serve as ideal agents for adjunct treatment of pathological processes that have a neuroinflammatory component. As highly lipophilic molecules, they readily access the brain. Furthermore, they have relatively low toxicity and can be engineered to selectively target cannabinoid receptors. To date, two cannabinoid receptors have been identified, characterized and designated CB1 and CB2. CB1 appears to be constitutively expressed within the CNS while CB2 apparently is induced during inflammation. The inducible nature of CB2 extends to microglia, the resident macrophages of the brain that play a critical role during early stages of inflammation in that compartment. Thus, the cannabinoid-cannabinoid receptor system may prove therapeutically manageable in ablating neuropathogenic disorders such as Alzheimer’s disease, multiple sclerosis, amyotrophic.”

“The marijuana plant, Cannabis sativa, has been consumed therapeutically and recreationally for centuries because of its medicinal and psychotropic attributes. Cannabis contains a complex array of substances, including a group of terpenoid-like, highly lipophilic compounds referred to as cannabinoids. To date, over 60 cannabinoids have been identified from the marijuana plant. Cannabinoids account for the majority of the effects attributed to marijuana that users experience, including euphoria, impaired perception and memory, and mild sedation. While cannabinoids have been used to abolish loss of appetite and to ablate nausea and pain in patients suffering from severe medical disorders, these compounds also possess immune modulatory properties that may prove detrimental to human health. However, accumulating evidence suggests that cannabinoids also may serve as therapeutic agents in neuropathogenic diseases, pathologically hallmarked by elicitation of pro-inflammatory factors by cells of the central nervous system (CNS) and infiltrated peripheral immunocytes. Cannabinoids have the potential to be ideal therapeutic candidates in abolishing inflammatory neuropathies in that they can readily penetrate the blood brain barrier (BBB) to access the brain, have low levels of toxicity, and can specifically exert their effects through cannabinoid receptors. The major cannabinoid receptor type that appears to be targeted in neuroinflammation is cannabinoid receptor 2 (CB2). This receptor has been identified in select cells of the CNS, can be induced on demand during early inflammatory events, and has been shown to attenuate pro-inflammatory cytokine production by microglia, the resident macrophages of the brain that play a central role in many neuropathological processes.”

“In the present review the immune modulatory properties of cannabinoids, including their relation to interaction with cannabinoid receptors as linked to inflammatory neuropathies will be discussed. Included in this review will be an overview of the signal transduction cascades associated with cannabinoid receptors, and the effects of cannabinoid receptor signaling on immune cell function and immunity, and more importantly in the CNS. These discussions will lay the groundwork for the critical element of this review, in which we explore the potential of cannabinoid receptors to serve as therapeutic targets to attenuate the elicitation of pro-inflammatory mediators during neuropathogenic diseases and disorders such as Alzheimer’s disease (AD), Multiple Sclerosis (MS), Amyotrophic Lateral Sclerosis (ALS), HIV Encephalitis (HIVE), Closed Head Injury (CHI) and Granulomatous Amebic Encephalitis (GAE).”

“It is apparent that therapeutic intervention at an early stage of neuroinflammation is critical. The recognition that microglia express CB2 and that its activation results in ablation of untoward immune responses indicates that this receptor may serve as an ideal therapeutic target. Cannabinoids, as highly lipophilic compounds, can readily penetrate the BBB and access the brain. Furthermore, these compounds can be designed to have low toxicity, minimal psychotropic properties, and to selectively target cells that express the CB2, particularly microglia that serve as endogenous immune cells of the CNS and that play a prominent role in neuroinflammatory processes.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2750822/

The endocannabinoid system in peripheral lymphocytes as a mirror of neuroinflammatory diseases.

Abstract

“During immuno-mediated attack of the brain, activation of endocannabinoids represents a protective mechanism, aimed at reducing both neurodegenerative and inflammatory damage through various and partially converging mechanisms that involve neuronal and immune cells. Here, we review the main alterations of the endocannabinoid system (ECS) within the central nervous system and in peripheral blood mononuclear cells, in order to discuss the intriguing observation that elements of the peripheral ECS mirror central dysfunctions of endocannabinoid signaling. As a consequence, elements of blood ECS might serve as novel, non-invasive diagnostic tools of several neurological disorders, and targeting the ECS might be useful for therapeutic purposes. In addition, we discuss the appealing working hypothesis that the presence of type-1 cannabinoid receptors on the luminal side, and that of type-2 cannabinoid receptors on the abluminal side of the blood-brain barrier, could drive a unidirectional transport of AEA in the luminal –> abluminal direction (i.e., from blood to brain), thus implying that blood may be a reservoir of AEA for the brain. On this basis, it can be expected that an unbalance of the endogenous tone of AEA in the blood may sustain a similar unbalance of its level within the brain, as demonstrated in Huntington’s disease, Parkinson’s disease, multiple sclerosis, attention-deficit/hyperactivity disorder, schizophrenia, depression and headache.”

http://www.ncbi.nlm.nih.gov/pubmed/18781987

CNS immune surveillance and neuroinflammation: endocannabinoids keep control.

Abstract

“To avoid inflammatory escalation, the central nervous system (CNS) harbors an impressive arsenal of cellular and molecular mechanisms enabling strict control of immune reactions. We here summarize studies suggesting that the old paradigm of the “CNS immune privilege” is overly simplistic. The immune system is allowed to keep the CNS under surveillance, but in a strictly controlled, limited and well-regulated manner. The first line of defense lies outside the brain parenchyma to spare neuronal tissue from the detrimental effects of an inflammatory immune response. As a second line of defense neuroinflammation is unavoidable when pathogens infiltrate the brain or the CNS-immune-homeostasis fails. Inflammation in the CNS is often accompanied by divers brain pathologies. We here review recent strategies to maintain brain homeostasis and modulate neuroinflammation. We focus on Multiple Sclerosis as an example of a complex neuroinflammatory disease. In the past years, several in vitro, in vivo and clinical studies suggested that the endocannabinoid system participates crucially in the immune control and protection of the CNS. We discuss here the endocannabinoid system as a key regulator mechanism of the cross talk between brain and the immune system as well as its potential as a therapeutic target.”

http://www.ncbi.nlm.nih.gov/pubmed/18781977

Endocannabinoids in neuroimmunology and stress.

Abstract

“Two topics are presented in this review. In the first section, we review data regarding the effects of the endocannabinoids (eCBs) and cannabinoid receptors on neuroimmune function. The function of eCBs in the interaction between the immune system and the central nervous system (CNS) is of particular interest, since the CNS itself is a rich source of eCBs while being exquisitely sensitive to inflammation. There are several sites at which cannabinoids can influence neuroinflammation. Microglial cells express both CB receptors and make eCBs. Activation of CB receptors on these cells seems to promote migration and proliferation but to reduce activation to macrophages. In several neurodegenerative diseases, up-regulation of microglial CB2 receptors have been observed. It is our hypothesis that microglial CB receptor activity is anti-inflammatory and could be exploited to manipulate neuroinflammatory processes with a minimum of unwanted effects. The second topic discussed suggests that the eCB/CB1 receptor pair is involved in the responses of animals to acute, repeated and variable stress. The roles of this pair are complex and dependent upon previous stress, among other things. Dysfunctional responding to stress is a component of several human neuropsychiatric disorders, including anxiety and panic disorders, post-traumatic stress disorders, premenstrual dysphoria and quite possibly, drug abuse. While it is too early to say with certainty, it is very possible that either inhibition or potentiation of endocannabinoid signaling will be an efficacious novel therapeutic approach to more than one human psychiatric disease.”

http://www.ncbi.nlm.nih.gov/pubmed/16375683

Nonpsychotropic Cannabinoid Receptors Regulate Microglial Cell Migration

“During neuroinflammation, activated microglial cells migrate toward dying neurons, where they exacerbate local cell damage. The signaling molecules that trigger microglial cell migration are poorly understood. In this paper, we show that pathological overstimulation of neurons by glutamate plus carbachol dramatically increases the production of the endocannabinoid 2-arachidonylglycerol (2-AG) but only slightly increases the production of anandamide and does not affect the production of two putative endocannabinoids, homo-γ-linolenylethanolamide and docosatetraenylethanolamide. We further show that pathological stimulation of microglial cells with ATP also increases the production of 2-AG without affecting the amount of other endocannabinoids. Using a Boyden chamber assay, we provide evidence that 2-AG triggers microglial cell migration. This effect of 2-AG occurs through CB2 and abnormal-cannabidiol-sensitive receptors, with subsequent activation of the extracellular signal-regulated kinase 1/2 signal transduction pathway. It is important to note that cannabinol and cannabidiol, two nonpsychotropic ingredients present in the marijuana plant, prevent the 2-AG-induced cell migration by antagonizing the CB2 and abnormal-cannabidiol-sensitive receptors, respectively. Finally, we show that microglial cells express CB2 receptors at the leading edge of lamellipodia, which is consistent with the involvement of microglial cells in cell migration. Our study identifies a cannabinoid signaling system regulating microglial cell migration. Because this signaling system is likely to be involved in recruiting microglial cells toward dying neurons, we propose that cannabinol and cannabidiol are promising nonpsychotropic therapeutics to prevent the recruitment of these cells at neuroinflammatory lesion sites.”

“Because marijuana produces remarkable beneficial effects, patients with multiple sclerosis, for example, commonly use this plant as a therapeutic agent; however, we still lack essential information on the mechanistic basis of these beneficial effects.”

“The marijuana plant, Cannabis sativa, contains >60 cannabinoid compounds, the best known being Δ9-tetrahydrocannabinol (THC), cannabinol (CBN), and cannabidiol (CBD) (for review, see. Cannabinoid compounds produce their biological effects by acting through at least three cannabinoid receptors (see Table1). These include the cloned cannabinoid CB1 receptors, which are expressed predominately in the CNS, the cloned cannabinoid CB2 receptors, which are expressed predominately by immune cells, and the abnormal-cannabidiol-sensitive receptors (hereafter referred to as abn-CBD receptors). The latter receptors have not been cloned yet, but they have been pinpointed pharmacologically in mice lacking CB1 and CB2 receptors and are also known as anandamide (AEA) receptors.”

“We also show that CBN and CBD, two nonpsychotropic bioactive compounds of marijuana, may antagonize the 2-AG-induced recruitment of microglial cells. This is in agreement with the fact that nabilone, a synthetic analog of THC, produces minimal palliative effects against multiple sclerosis symptoms, whereas smoking cannabis is reported to be beneficial. Therefore, our results suggest that bioactive cannabinoids present in the marijuana plant, such as CBN and CBD, are likely to underlie the increased efficacy of cannabis versus nabilone and therefore hold promise as nonpsychotropic therapeutics to treat neuroinflammation.”

http://www.jneurosci.org/content/23/4/1398.long

Cannabinoids and neuroinflammation

Abstract

“Growing evidence suggests that a major physiological function of the cannabinoid signaling system is to modulate neuroinflammation. This review discusses the anti-inflammatory properties of cannabinoid compounds at molecular, cellular and whole animal levels, first by examining the evidence for anti-inflammatory effects of cannabinoids obtained using in vivo animal models of clinical neuroinflammatory conditions, specifically rodent models of multiple sclerosis, and second by describing the endogenous cannabinoid (endocannabinoid) system components in immune cells. Our aim is to identify immune functions modulated by cannabinoids that could account for their anti-inflammatory effects in these animal models.”

Conclusion

“Cells involved in neuroinflammation express functional cannabinoid receptors and produce and degrade endocannabinoids, suggesting that the endocannabinoid signaling system has a regulatory function in the inflammatory response. Specifically, during neuroinflammation, there is an upregulation of components involved in the cannabinoid signaling system. This suggests that the cannabinoid signaling system participates in the complex development of this disease, which includes a tight orchestration of the various immune cells involved. If this is the case, the cannabinoid signaling machinery may provide ideal targets, since these would be more susceptible to pharmacological effects than those in the same system under healthy conditions. In line with this, cannabinoid compounds alter the functions of these cells, generally by eliciting anti-inflammatory effects. In the case of MS, neuroinflammation is accompanied by autoimmunity and suppressing the immune response may halt or even prevent associated symptoms. As seen in rodent models of MS, cannabinoids ameliorate the progression of and symptoms associated with neuroinflammation. Future experiments into the components that alter endocannabinoid production and degradation, cannabinoid receptor expression, and effects of cannabinoid receptor agonists on immune cells will provide the necessary information to design more effective treatments for neuroinflammation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574256/

The endocannabinoid system in normal and pathological brain ageing.

Abstract

“The role of endocannabinoids as inhibitory retrograde transmitters is now widely known and intensively studied. However, endocannabinoids also influence neuronal activity by exerting neuroprotective effects and regulating glial responses. This review centres around this less-studied area, focusing on the cellular and molecular mechanisms underlying the protective effect of the cannabinoid system in brain ageing. The progression of ageing is largely determined by the balance between detrimental, pro-ageing, largely stochastic processes, and the activity of the homeostatic defence system. Experimental evidence suggests that the cannabinoid system is part of the latter system. Cannabinoids as regulators of mitochondrial activity, as anti-oxidants and as modulators of clearance processes protect neurons on the molecular level. On the cellular level, the cannabinoid system regulates the expression of brain-derived neurotrophic factor and neurogenesis. Neuroinflammatory processes contributing to the progression of normal brain ageing and to the pathogenesis of neurodegenerative diseases are suppressed by cannabinoids, suggesting that they may also influence the ageing process on the system level. In good agreement with the hypothesized beneficial role of cannabinoid system activity against brain ageing, it was shown that animals lacking CB1 receptors show early onset of learning deficits associated with age-related histological and molecular changes. In preclinical models of neurodegenerative disorders, cannabinoids show beneficial effects, but the clinical evidence regarding their efficacy as therapeutic tools is either inconclusive or still missing.”

http://www.ncbi.nlm.nih.gov/pubmed/23108550

Cannabinoid receptor stimulation is anti-inflammatory and improves memory in old rats

“The number of activated microglia increase during normal aging. Stimulation of endocannabinoid receptors can reduce the number of activated microglia, particularly in the hippocampus, of young rats infused chronically with lipopolysaccharide (LPS). In the current study we demonstrate that endocannabinoid receptor stimulation by administration of WIN-55212-2 (2 mg/kg/day) can reduce the number of activated microglia in hippocampus of aged rats and attenuate the spatial memory impairment in the water pool task. Our results suggest that the action of WIN-55212-2 does not depend upon a direct effect upon microglia or astrocytes but is dependent upon stimulation of neuronal cannabinoid receptors. Aging significantly reduced cannabinoid type 1 receptor binding but had no effect on cannabinoid receptor protein levels. Stimulation of cannabinoid receptors may provide clinical benefits in age-related diseases that are associated with brain inflammation, such as Alzheimer’s disease.”

“Our results are consistent with the hypothesis that CB receptors on hippocampal neurons modulate glutamatergic and GABAergic function and this leads to reduced microglia activation. This mechanism may underlie the neuroprotective effects of cannabinoids”.

“Importantly, the benefits of cannabinoid receptor stimulation occurred at a dose that did not impair performance in a spatial memory task, indeed the performance of aged rats was significantly improved. This finding is particularly relevant for elderly for patients suffering with diseases associated with brain inflammation, e.g. AD, Parkinson’s disease or multiple sclerosis. The current report is the first to our knowledge to demonstrate the anti-inflammatory actions of cannabinoid therapy in aged animals and strongly advocate an cannabinoid-based therapy for neuroinflammation-related diseases, as well as a potential tool to reduce the impairment in memory processes occurring during normal aging.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2586121/

Can the benefits of cannabinoid receptor stimulation on neuroinflammation, neurogenesis and memory during normal aging be useful in AD prevention?

Abstract

“Background

Alzheimer’s disease has become a growing socio-economical concern in developing countries where increased life expectancy is leading to large aged populations. While curing Alzheimer’s disease or stopping its progression does not appear within reach in a foreseeable future, new therapies capable of delaying the pathogenesis would represent major breakthroughs.

Presentation of the hypothesis

The growing number of medical benefits of cannabinoids, such as their ability to regulate age-related processes like neuroinflammation, neurogenesis and memory, raise the question of their potential role as a preventive treatment of AD.

Testing the hypothesis

To test this hypothesis, epidemiological studies on long term, chronic cannabinoid users could enlighten us on the potential benefits of these compounds in normal and pathological ageing processes. Systematic pharmacological (and thus more mechanistic) investigations using animal models of Alzheimer’s disease that have been developed would also allow a thorough investigation of the benefits of cannabinoid pharmacotherapy in the pathogenesis of Alzheimer’s disease.

Implications of the hypothesis

The chronic administration of non-selective cannabinoids may delay the onset of cognitive deficits in AD patients; this will dramatically reduce the socio-economic burden of AD and improve the quality of life of the patients and their families.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3284401/