The endocannabinoid signaling system in cancer.

Image result for trends in pharmacological sciences

“The endocannabinoid system, comprising lipid-derived endocannabinoids, their G-protein-coupled receptors (GPCRs), and the enzymes for their metabolism, is emerging as a promising therapeutic target in cancer.

This report highlights the main signaling pathways for the antitumor effects of the endocannabinoid system in cancer and its basic role in cancerpathogenesis, and discusses the alternative view of cannabinoid receptors as tumor promoters.

We focus on new players in the antitumor action of the endocannabinoid system and on emerging crosstalk among cannabinoid receptors and other membrane or nuclear receptors involved in cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/23602129

Cannabinoid CB1 Receptor Is Downregulated in Clear Cell Renal Cell Carcinoma

“Several studies in cell cultures and in animal models have demonstrated that cannabinoids have important antitumoral properties… many of these effects are mediated through cannabinoid (CB) receptors CB1 and CB2…

The obtained data suggest a possible implication of the endocannabinoid system in renal carcinogenesis.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2989249/

 

 

Marijuana as a possible treatment for HIV and cancer

Marijuana

“There’s been some interesting research on using THC (tetrahydrocannabinol), the principal psychoactive drug in marijuana, to help fight HIV, and damage cancer cells in some leukemias and possibly malignant tumors.

…the possibility exists that information from both of these research studies may produce beneficial results in the treatment of HIV and cancer.”

More: http://americablog.com/2014/02/marijuana-treatment-hiv-cancer.html

Knocking down the expression of adenylate cyclase-associated protein 1 inhibits the proliferation and migration of breast cancer cells.

“Adenylate cyclase-associated protein 1 (CAP1) is a conserved protein that was found to be up-regulated in breast cancer and related to the migration of breast cancer…

CAP1 might be a potential molecular targeted therapy for surgery and immune treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/24509166

Upregulated expression of CAP1 is associated with tumor migration and metastasis in hepatocellular carcinoma.

“Hepatocellular carcinoma (HCC) is one of the most common cancers that exhibits high incidences of intrahepatic metastasis and tumor recurrence.

Adenylate cyclase-associated protein 1 (CAP1)… was recently reported to play a role in cell motility and the pathology of pancreatic cancer. In this study, we examined a potential role of CAP1 in HCC progression, and found that CAP1 was overexpressed in HCC specimens…

Collectively, our results indicated that upregulated expression of CAP1 might contribute heavily to the metastasis of HCC.”

http://www.ncbi.nlm.nih.gov/pubmed/24359721

 http://www.thctotalhealthcare.com/category/hepatocellular-carcinoma-hcc/

Overexpression of adenylate cyclase-associated protein 1 is associated with metastasis of lung cancer.

“Lung cancer ranks first in both prevalence and mortality rates among all types of cancer. Metastasis is the main cause of treatment failure. Biomarkers are critical to early diagnosis and prediction and monitoring of progressive lesions…

The present study assessed the diagnostic and prognostic value of cyclase-associated protein 1 (CAP1) for lung cancer…

These findings suggest that overexpression of CAP1 in lung cancer cells, particularly at the metastatic stage, may have significant clinical implications as a diagnostic/prognostic factor for lung cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/23842884

http://www.thctotalhealthcare.com/category/lung-cancer/

Adenylate cyclase-associated protein 1 overexpressed in pancreatic cancers is involved in cancer cell motility

“Pancreatic cancer is a leading cause of cancer death worldwide… Pancreatic cancer has the worst prognosis among cancers due to the difficulty of early diagnosis and its aggressive behavior.

…the adenylate cyclase-associated protein 1 (CAP1) gene was shown to be overexpressed in all of the xenografts.

Knockdown of CAP1 by RNA interference resulted in the reduction of lamellipodium formation, motility, and invasion of pancreatic cancer cells.

This is the first report demonstrating the overexpression of CAP1 in pancreatic cancers and suggesting the involvement of CAP1 in the aggressive behavior of pancreatic cancer cells.”

http://www.nature.com/labinvest/journal/v89/n4/full/labinvest20095a.html

http://www.thctotalhealthcare.com/category/pancreatic-cancer/

Inhibition of adenylate cyclase by delta 9-tetrahydrocannabinol in mouse spleen cells: a potential mechanism for cannabinoid-mediated immunosuppression.

“The ability of delta 9-Tetrahydrocannabinol (delta 9-THC) to modulate adenylate cyclase activity in mouse spleen cells was investigated…

delta 9-THC treated spleen cells demonstrated a 33% inhibition and a 66% inhibition in intracellular cAMP… respectively…

These studies suggest that inhibition of immune function by delta 9-THC may be mediated through the inhibition of intracellular cAMP early after antigen stimulation.”

http://www.ncbi.nlm.nih.gov/pubmed/1321935

Anandamide, a naturally-occurring agonist of the cannabinoid receptor, blocks adenylate cyclase at the frog neuromuscular junction.

“Anandamide (arachydonylethanolamide) is a naturally-occurring ligand of the canabinoid receptor. When anandamide binds to its receptor, adenylate cyclase is inhibited…

The conclusions are that the motor nerve terminal has a cannabinoid receptor.

The binding of anandamide to this receptor seems to block adenylate cyclase.”

http://www.ncbi.nlm.nih.gov/pubmed/7953630

The peripheral cannabinoid receptor: adenylate cyclase inhibition and G protein coupling.

“Two cannabinoid receptors, designated neuronal (or CB1) and peripheral (or CB2), have recently been cloned. Activation of CB1 receptors leads to inhibition of adenylate cyclase and N-type voltage-dependent Ca2+ channels.

Here we show, using a CB2 transfected Chinese hamster ovary cell line, that this receptor binds a variety of tricyclic cannabinoid ligands as well as the endogenous ligand anandamide.

Activation of the CB2 receptor by various tricyclic cannabinoids inhibits adenylate cyclase activity and this inhibition is pertussis toxin sensitive indicating that this receptor is coupled to the Gi/G(o) GTP-binding proteins…

These results characterize the CB2 receptor as a functional and distinctive member of the cannabinoid receptor family.”

http://www.ncbi.nlm.nih.gov/pubmed/7498464