Blunted stress reactivity in chronic cannabis users

Psychopharmacology

“One of the most commonly cited reasons for chronic cannabis use is to cope with stress.

Consistent with this, cannabis users have shown reduced emotional arousal and dampened stress reactivity in response to negative imagery.

Chronic cannabis use is associated with blunted stress reactivity.” https://link.springer.com/article/10.1007/s00213-017-4648-z?no-access=true

“WSU study: Regular marijuana users more calm under stress” http://komonews.com/news/local/wsu-study-regular-marijuana-users-more-calm-under-stress

Modeling Neurodegenerative Disorders for Developing Cannabinoid-Based Neuroprotective Therapies.

Methods in Enzymology

“The increase in lifespan during the last 50 years, mainly in developed countries, has originated a progressive elevation in the incidence of chronic neurodegenerative disorders, for which aging is the key risk factor. This fact will definitively become the major biomedical challenge during the present century, in part because the expectation of a persisting elevation in the population older than 65 years over the whole population and, on the other hand, because the current lack of efficacious therapies to control these disorders despite years of intense research.

This chapter will address this question and will stress the urgency of developing better neuroprotective and neurorepair strategies that may delay/arrest the progression of these disorders, reviewing the major needs to solve the causes proposed for the permanent failures experienced in recent years, e.g., to develop multitarget strategies, to use more predictive experimental models, and to identify early disease biomarkers.

This chapter will propose the cannabinoids and their classic (e.g., endocannabinoid receptors and enzymes) and nonclassic (e.g., peroxisome proliferator-activated receptors, transcription factors) targets as a useful strategy for developing novel therapies for these disorders, based on their broad-spectrum neuroprotective profile, their activity as an endogenous protective system, the location of the endocannabinoid targets in cell substrates critical for neuronal survival, and their ability to serve for preservation and rescue, but also for repair and/or replacement, of neurons and glial cells against cytotoxic insults.”

https://www.ncbi.nlm.nih.gov/pubmed/28750802

http://www.sciencedirect.com/science/article/pii/S0076687917301787?via%3Dihub

Endocannabinoid Transport Proteins: Discovery of Tools to Study Sterol Carrier Protein-2.

Elsevier

“The endocannabinoid (eCB) neurotransmitter system regulates diverse neurological functions including stress and anxiety, pain, mood, and reward. Understanding the mechanisms underlying eCB regulation is critical for developing targeted pharmacotherapies to treat these and other neurologic disorders.

Cellular studies suggest that the arachidonate eCBs, N-arachidonoylethanolamine (AEA) and 2-arachidonoylglycerol (2-AG), are substrates for intracellular binding and transport proteins, and several candidate proteins have been identified. Initial evidence from our laboratory indicates that the lipid transport protein, sterol carrier protein 2 (SCP-2), binds to the eCBs and can regulate their cellular concentrations.

Here, we present methods for evaluating SCP-2 binding of eCBs and their application to the discovery of the first inhibitor lead molecules. Using a fluorescent probe displacement assay, we found SCP-2 binds the eCBs, AEA (Ki=0.68±0.05μM) and 2-AG (Ki=0.37±0.02μM), with moderate affinity. A series of structurally diverse arachidonate analogues also bind SCP-2 with Ki values between 0.82 and 2.95μM, suggesting a high degree of tolerance for arachidonic acid head group modifications in this region of the protein. We also report initial structure-activity relationships surrounding previously reported inhibitors of Aedis aegypti SCP-2, and the results of an in silico high-throughput screen that identified structurally novel SCP-2 inhibitor leads.

The methods and results reported here provide the basis for a robust probe discovery effort to fully elucidate the role of facilitated transport mediated by SCP-2 in eCB regulation and function.”

https://www.ncbi.nlm.nih.gov/pubmed/28750817

http://www.sciencedirect.com/science/article/pii/S007668791730174X?via%3Dihub

 

Going to pot? The impact of dispensary closures on crime☆

Journal of Urban Economics

“Jurisdictions that sanction medical or, more recently, recreational marijuana use often allow retail sales at dispensaries. Dispensaries are controversial as many believe they contribute to local crime. To assess this claim, we analyze the short-term mass closing of hundreds of medical marijuana dispensaries in Los Angeles.

Contrary to popular wisdom, we find an immediate increase in crime around dispensaries ordered to close relative to those allowed to remain open.

The increase is specific to the type of crime most plausibly deterred by bystanders, and is correlated with neighborhood walkability. We find a similar pattern of results for temporary restaurant closures due to health code violations. A likely common mechanism is that “eyes upon the street” deter some types of crime.”

“Closing medical marijuana dispensaries increases crime, according to new study.  Contrary to popular belief, medical marijuana dispensaries (MMDs) reduce crime in their immediate areas, suggests a new report.”  https://www.sciencedaily.com/releases/2017/07/170711125704.htm

The endocannabinoid system expression in the female reproductive tract is modulated by estrogen.

Cover image

“The endocannabinoid system (ECS) is involved in several physiological events that resulted in a growing interest in its modulation. Moreover, the uterine levels of anandamide (AEA), the major endocannabinoid, must be tightly regulated to create proper embryo implantation conditions. However, there are no evidences about the regulation of AEA in uterus by estrogen.

Thus, the aim of this study is to elucidate whether estradiol benzoate (EB) and tamoxifen (TAM) administration to ovariectomized (OVX) rats can induce changes in the expression of cannabinoid receptors and AEA-metabolic enzymes in uterus by evaluating gene transcription and protein levels by qPCR, Western blot and immunohistochemistry.

In summary, these data collectively indicate that the expression of ECS components, as well as, the AEA and PGE2 levels in rat uterus is modulated by EB. Thus, estradiol may have a direct regulatory role in the modulation of ECS in female reproductive tissues.”

https://www.ncbi.nlm.nih.gov/pubmed/28743542

http://linkinghub.elsevier.com/retrieve/pii/S0960076017301887

The effect of Pro NanoLipospheres (PNL) formulation containing natural absorption enhancers on the oral bioavailability of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in a rat model.

Cover image

“The lipophilic phytocannabinoids cannabidiol (CBD) and Δ9-tetrahydrocannabinol (THC) show therapeutic efficacy in various medical conditions. Both molecules are poorly water soluble and subjected to extensive first pass metabolism in the gastrointestinal tract, leading to a limited oral bioavailability of approximately 9%. We have developed an advanced lipid based Self-Emulsifying Drug Delivery System termed Advanced Pro-NanoLiposphere (PNL) pre-concentrate. The PNL is composed of lipid and emulsifying excipients of GRAS status and are known to increase solubility and reduce Phase I metabolism of lipophilic active compounds. Advanced PNLs are PNLs with an incorporated natural absorption enhancers. These molecules are natural alkaloids and phenolic compounds which were reported to inhibit certain phase I and phase II metabolism processes. Here we use piperine, curcumin and resveratrol to formulate the Advanced-PNL formulations. Consequently, we have explored the utility of these Advanced-PNLs on CBD and THC oral bioavailability. Oral administration of CBD-piperine-PNL resulted in 6-fold in AUC compared to CBD solution, proving to be the most effective of the screened formulations. The same trend was found in pharmacokinetic experiments of THC-piperine-PNL with resulted in a 9.3-fold increase in AUC as compared to THC solution. Our Piperine-PNL can be used as a platform for synchronized delivery of piperine and CBD or THC to the enterocyte site. This co-localization provides an increase in CBD and THC bioavailability by its effect at the pre-enterocyte and the enterocyte levels of the absorption process. The extra augmentation in the absorption of CBD and THC by incorporating piperine into PNL is attributed to the inhibition of Phase I and phase II metabolism by piperine in addition to the Phase I metabolism and P-gp inhibition by PNL. These novel results pave the way to utilize piperine-PNL delivery system for other poorly soluble, highly metabolized compounds that currently cannot be administered orally.”

https://www.ncbi.nlm.nih.gov/pubmed/28736128

http://www.sciencedirect.com/science/article/pii/S0928098717304025

Associations between Adolescent Cannabis Use and Neuropsychological Decline: A Longitudinal Co-Twin Control Study.

Addiction

“This study tested whether adolescents who used cannabis or met criteria for cannabis dependence showed neuropsychological impairment prior to cannabis initiation and neuropsychological decline from before to after cannabis initiation.

Short-term cannabis use in adolescence does not appear to cause IQ decline or impair executive functions, even when cannabis use reaches the level of dependence. Family background factors explain why adolescent cannabis users perform worse on IQ and executive function tests.”

https://www.ncbi.nlm.nih.gov/pubmed/28734078

http://onlinelibrary.wiley.com/doi/10.1111/add.13946/abstract

Longitudinal study of hippocampal volumes in heavy cannabis users.

SAGE Journals

“Cannabis exposure, particularly heavy cannabis use, has been associated with neuroanatomical alterations in regions rich with cannabinoid receptors such as the hippocampus in some but not in other (mainly cross-sectional) studies. However, it remains unclear whether continued heavy cannabis use alters hippocampal volume, and whether an earlier age of onset and/or a higher dosage exacerbate these changes.

Compared to controls, cannabis users did not show hippocampal volume alterations at either baseline or follow-up. Hippocampal volumes increased over time in both cannabis users and controls, following similar trajectories of increase. Cannabis dose and age of onset of cannabis use did not affect hippocampal volumes.

Continued heavy cannabis use did not affect hippocampal neuroanatomical changes in early adulthood. This contrasts with prior evidence on alterations in this region in samples of older adult cannabis users. In young adults using cannabis at this level, cannabis use may not be heavy enough to affect hippocampal neuroanatomy.”

Antiallodynic effect of β-caryophyllene on paclitaxel-induced peripheral neuropathy in mice.

Cover image

“Painful peripheral neuropathy is a common side effect of paclitaxel (PTX). The use of analgesics is an important component for management of PTX-induced peripheral neuropathy (PINP). However, currently employed analgesics have several side effects and are poorly effective.

β-caryophyllene (BCP), a dietary selective CB2 agonist, has shown analgesic effect in neuropathic pain models, but its role in chemotherapy-induced neuropathic pain has not yet been investigated. Herein, we used the mouse model of PINP to show the therapeutic effects of BCP in this neuropathy.

Our findings show that BCP effectively attenuated PINP, possibly through CB2-activation in the CNS and posterior inhibition of p38 MAPK/NF-κB activation and cytokine release. Taken together, our results suggest that BCP could be used to attenuate the establishment and/or treat PINP.”  https://www.ncbi.nlm.nih.gov/pubmed/28729222

http://www.sciencedirect.com/science/article/pii/S0028390817303465

“β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis.”  http://www.ncbi.nlm.nih.gov/pubmed/23138934

Smoked marijuana attenuates performance and mood disruptions during simulated night shift work.

Drug and Alcohol Dependence Home

“Individuals who work nonstandard schedules, such as rotating or night shifts, are more susceptible to workplace injuries, performance decrements, and reduced productivity. This population is also almost twice as likely to use illicit drugs as individuals working a standard day shift. The purpose of this study was to examine the effects of smoked marijuana on performance, mood, and sleep during simulated shift work.

Ten experienced marijuana smokers completed this 23-day, within-participant residential study. They smoked a single marijuana cigarette (0, 1.9, 3.56% Δ9-THC) one hour after waking for three consecutive days under two shift conditions: day shift and night shift. Shifts alternated three times during the study, and shift conditions were separated by an ‘off’ day. When participants smoked placebo cigarettes, psychomotor performance and subjective-effect ratings were altered during the night shift compared to the day shift: performance (e.g., vigilance) and a few subjective ratings were decreased (e.g., “Self-Confident”), whereas other ratings were increased (e.g., “Tired”). Objective and subjective measures of sleep were also disrupted, but to a lesser extent.

Marijuana attenuated some performance, mood, and sleep disruptions: participants performed better on vigilance tasks, reported being less miserable and tired and sleep a greater number of minutes. Limited negative effects of marijuana were noted. These data demonstrate that abrupt shift changes produce performance, mood, and sleep decrements during night shift work and that smoked marijuana containing low to moderate Δ9-THC concentrations can offset some of these effects in frequent marijuana smokers.”

https://www.ncbi.nlm.nih.gov/pubmed/28728115

http://www.drugandalcoholdependence.com/article/S0376-8716(17)30309-5/fulltext