Pharmacological blockade of either cannabinoid CB1 or CB2 receptors prevents both cocaine-induced conditioned locomotion and cocaine-induced reduction of cell proliferation in the hippocampus of adult male rat.

“Addiction to major drugs of abuse, such as cocaine, has recently been linked to alterations in adult neurogenesis in the hippocampus. The endogenous cannabinoid system modulates this proliferative response as demonstrated by the finding that pharmacological activation/blockade of cannabinoid CB1 and CB2 receptors not only modulates neurogenesis but also modulates cell death in the brain.

In the present study, we evaluated whether the endogenous cannabinoid system affects cocaine-induced alterations in cell proliferation…

These results indicate that the changes in neurogenic, apoptotic and gliotic processes that were produced by repeated cocaine administration were normalized by pharmacological blockade of CB1 and CB2. The restorative effects of cannabinoid receptor blockade on hippocampal cell proliferation were associated with the prevention of the induction of conditioned locomotion but not with the prevention of cocaine-induced sensitization.”

http://www.ncbi.nlm.nih.gov/pubmed/24409127

Endocannabinoid and Cannabinoid-Like Fatty Acid Amide Levels Correlate with Pain-Related Symptoms in Patients with IBS-D and IBS-C: A Pilot Study.

“Irritable bowel syndrome (IBS) is a functional gastrointestinal (GI) disorder, associated with alterations of bowel function, abdominal pain and other symptoms related to the GI tract. Recently the endogenous cannabinoid system (ECS) was shown to be involved in the physiological and pathophysiological control of the GI function. The aim of this pilot study was to investigate whether IBS defining symptoms correlate with changes in endocannabinoids or cannabinoid like fatty acid levels in IBS patients.

CONCLUSION:

IBS subtypes and their symptoms show distinct alterations of endocannabinoid and endocannabinoid-like fatty acid levels. These changes may partially result from reduced FAAH expression. The here reported changes support the notion that the ECS is involved in the pathophysiology of IBS and the development of IBS symptoms.”

Endocannabinoid pathways and their role in multiple sclerosis-related muscular dysfunction.

“Modulation of the endocannabinoid system has been shown to have therapeutic potential in a number of disease states.

Sativex(®) (nabiximols, USAN name) contains the two main phytocannabinoids from Cannabis sativa, tetrahydrocannabinol and cannabidiol in a 1:1 ratio, and it acts as an endocannabinoid system modulator.

In an experimental mouse model of MS-related spasticity, Sativex dose-dependently improved hind limb flexion/stiffness and a dosage of 10 mg/kg was shown to be as effective as the most widely established anti-spasticity treatment baclofen (5 mg/kg).

These findings with Sativex are very promising and offer encouragement for MS patients, the majority of whom will develop spasticity-related disabling and recalcitrant symptoms. Furthermore, research into the endocannabinoid system may offer potential in other neurodegenerative, inflammatory and pain disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/21449854

Endocannabinoids: a unique opportunity to develop multitarget analgesics.

“After 4 millennia of more or less documented history of cannabis use, the identification of cannabinoids, and of Δ(9)-tetrahydrocannabinol in particular, occurred only during the early 1960s, and the cloning of cannabinoid CB1 and CB2 receptors, as well as the discovery of endocannabinoids and their metabolic enzymes, in the 1990s.

Despite this initial relatively slow progress of cannabinoid research, the turn of the century marked an incredible acceleration in discoveries on the “endocannabinoid signaling system,” its role in physiological and pathological conditions, and pain in particular, its pharmacological targeting with selective agonists, antagonists, and inhibitors of metabolism, and its previously unsuspected complexity.

The way researchers look at this system has thus rapidly evolved towards the idea of the “endocannabinoidome,” that is, a complex system including also several endocannabinoid-like mediators and their often redundant metabolic enzymes and “promiscuous” molecular targets.

These peculiar complications of endocannabinoid signaling have not discouraged efforts aiming at its pharmacological manipulation, which, nevertheless, now seems to require the development of multitarget drugs, or the re-visitation of naturally occurring compounds with more than one mechanism of action.

In fact, these molecules, as compared to “magic bullets,” seem to offer the advantage of modulating the “endocannabinoidome” in a safer and more therapeutically efficacious way.

This approach has provided so far promising preclinical results potentially useful for the future efficacious and safe treatment of chronic pain and inflammation.”

http://www.ncbi.nlm.nih.gov/pubmed/23623250

Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol.

“Colon cancer is a major public health problem. Cannabis-based medicines are useful adjunctive treatments in cancer patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS, i.e. CBD botanical drug substance, on colorectal cancer cell proliferation and in experimental models of colon cancer in vivo.

RESULTS:

CBD BDS and CBD reduced cell proliferation in tumoral, but not in healthy, cells… In vivo, CBD BDS reduced AOM-induced preneoplastic lesions and polyps as well as tumour growth in the xenograft model of colon cancer.

CONCLUSIONS:

CBD BDS attenuates colon carcinogenesis and inhibits colorectal cancer cell proliferation via CB1 and CB2 receptor activation. The results may have some clinical relevance for the use of Cannabis-based medicines in cancer patients.”

http://www.ncbi.nlm.nih.gov/pubmed/24373545

The Endocannabinoid System and Sex Steroid Hormone-Dependent Cancers.

“The “endocannabinoid system (ECS)” comprises the endocannabinoids, the enzymes that regulate their synthesis and degradation, the prototypicalcannabinoid receptors (CB1 and CB2), some noncannabinoid receptors, and an, as yet, uncharacterised transport system.

Recent evidence suggests that both cannabinoid receptors are present in sex steroid hormone-dependent cancer tissues and potentially play an important role in those malignancies.

Sex steroid hormones regulate the endocannabinoid system and the endocannabinoids prevent tumour development through putative protective mechanisms that prevent cell growth and migration, suggesting an important role for endocannabinoids in the regulation of sex hormone-dependent tumours and metastasis.

Here, the role of the endocannabinoid system in sex steroid hormone-dependent cancers is described and the potential for novel therapies assessed.”

http://www.ncbi.nlm.nih.gov/pubmed/24369462

Involvement of cannabinoid receptors in peripheral and spinal morphine analgesia.

“The interactions between the cannabinoid and opioid systems for pain modulation are reciprocal. However, the role and the importance of the cannabinoid system in the antinociceptive effects of opioids remain uncertain. We studied these interactions with the goal of highlighting the involvement of the cannabinoid system in morphine-induced analgesia.

In both phases of the formalin test, intra paw and intrathecal morphine produced similar antinociceptive effects in C57BL/6, cannabinoid type 1 and type 2 receptor wildtype (respectively cnr1WT and cnr2WT) mice. In cnr1 and cnr2 knockout (KO) mice, at the dose used the antinociceptive effect of intra paw morphine in the inflammatory phase of the formalin test was decreased by 87% and 76%, respectively. Similarly, the antinociceptive effect of 0.1 μg spinal morphine in the inflammatory phase was abolished in cnr1KO mice and decreased by 90% in cnr2KO mice. Interestingly, the antinociceptive effect of morphine in the acute phase of the formalin test was only reduced in cnr1KO mice. Notably, systemic morphine administration produced similar analgesia in all genotypes, in both the formalin and the hot water immersion tail flick tests.

Because the pattern of expression of the mu opioid receptor (MOP), its binding properties and its G protein coupling remained unchanged across genotypes, it is unlikely that the loss of morphine analgesia in the cnr1KO and cnr2KO mice is the consequence of MOP malfunction or downregulation due to the absence of its heterodimerization with either the CB1 or the CB2 receptors, at least at the level of the spinal cord.”

http://www.ncbi.nlm.nih.gov/pubmed/24365460

Endocannabinoid signalling in neuronal migration.

“The endocannabinoid (eCB) system consists of several endogenous lipids, their target CB1 and CB2 receptors and enzymes responsible for their synthesis and degradation. The most abundant eCB in the central nervous system (CNS), 2-arachidonoyl glycerol (2-AG), triggers a broad range of signalling events by acting on CB1, the most abundant G protein-coupled receptor in the CNS. The eCB system regulates many physiological processes including neurogenesis, axon guidance and synaptic plasticity. Recent studies have highlighted an additional important role for eCB signalling in neuronal migration, which is crucial to achieve the complex architecture and efficient wiring of the CNS. Indeed, eCB signalling controls migration both pre- and post-natally, regulating interneuron positioning in the developing cortex and hippocampus and the polarized motility of stem cell-derived neuroblasts. While these effects may contribute to cognitive deficits associated with cannabis consumption, they also provide potential opportunities for endogenous stem cell-based neuroregenerative strategies.”

http://www.ncbi.nlm.nih.gov/pubmed/24361301

Cannabinoid Receptors as Target for Treatment of Osteoporosis: A Tale of Two Therapies

“This review summarises in vitro and in vivo findings relating to the influence of cannabinoid ligands on bone metabolism and argues in favour of the exploitation of cannabinoid receptors as targets for both anabolic and anti-resorptive therapy for treatment of complex multifaceted bone diseases such as osteoporosis.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3001217/

The promise and dilemma of cannabinoid therapy: lessons from animal studies of bone disease.

“The endocannabinoid system plays an important role in numerous physiological processes and represents a potential drug target for diseases ranging from brain disorders to cancer…

In the aging skeleton, CB1 deficiency causes accelerated osteoporosis characterized mainly by a significant reduction in bone formation coupled to enhanced adipocyte accumulation in the bone marrow.

A similar acceleration of bone loss was also reported in aging CB2-deficient mice but found to be associated with enhanced bone turnover.

This perspective describes the role of cannabinoid ligands and their receptors in bone metabolism and highlights the promise and dilemma of therapeutic exploitation of the endocannabinoid system for treatment of bone disorders.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3868875/