Enhancement of endocannabinoid signaling with JZL184, an inhibitor of the 2-arachidonoylglycerol hydrolyzing enzyme monoacylglycerol lipase, produces anxiolytic effects under conditions of high environmental aversiveness in rats.

“Dysregulation in signaling of the endocannabinoid 2-arachidonoylglycerol (2-AG) is implicated in hyperresponsiveness to stress. We hypothesized that blockade of monoacylglycerol lipase (MGL), the primary enzyme responsible for 2-AG deactivation in vivo, would produce context-dependent anxiolytic effects in rats.

 These data warrant further testing of MGL inhibitors to elucidate the functional role of 2-AG in controlling anxiety and stress responsiveness. Our data further implicate a role for 2-AG in the regulation of emotion and validate MGL as a therapeutic target.”

http://www.ncbi.nlm.nih.gov/pubmed/21600985

The cannabinoid receptor CB₁ inverse agonist AM251 potentiates the anxiogenic activity of urocortin I in the basolateral amygdala.

The basolateral amygdala is reported to play an important role in the neural bases of emotional processing… Based on these findings, we propose that urocortin and endocannabinoid signaling are part of an integrated neural axis modulating anxiety states within the basolateral amygdala. This article is part of a Special Issue entitled ‘Anxiety and Depression’.”

http://www.ncbi.nlm.nih.gov/pubmed/21736884

Activation of cannabinoid CB1 receptors in the dorsolateral periaqueductal gray induces anxiolytic effects in rats submitted to the Vogel conflict test.

“Activation of cannabinoid CB(1) receptors in the dorsolateral periaqueductal gray induces anxiolytic-like effects in the elevated plus maze. The aim of this work was to verify if facilitation of endocannabinoid-mediated neurotransmission in this region would also produce anxiolytic-like effects in another model of anxiety, the Vogel conflict test…

The results give further support to the proposal that facilitation of CB(1) receptor-mediated endocannabinoid neurotransmission in the dorsolateral periaqueductal gray modulates defensive responses.”

http://www.ncbi.nlm.nih.gov/pubmed/18691568

Role in Anxiety Behavior of the Endocannabinoid System in the Prefrontal Cortex

“Increasing evidence that low doses of cannabinoid agonists reduce anxiety-like behaviors in mice and rats is being reported, thus suggesting an anxiolytic role for the endogenous cannabinoid signaling. In line with this hypothesis, pharmacological agents that enhance the endogenous cannabinoid signaling exert anxiolytic-like actions…

  These findings support an anxiolytic role for physiological increases in AEA in the PFC, whereas more marked increases or decreases of this endocannabinoid might lead to an anxiogenic response due to TRPV1 stimulation or the lack of CB1 activation, respectively.”

http://cercor.oxfordjournals.org/content/18/6/1292.long

GABAergic and endocannabinoid dysfunction in anxiety – future therapeutic targets?

“With a lifetime prevalence of up to 25% anxiety disorders are among the most frequently occurring psychiatric disorders. The etiology of anxiety is considered to be multifactorial with an interaction of neurobiological, psychological and environmental factors. With regard to neurobiological factors, several neurochemical systems and neuroanatomical circuits have been discussed to be involved. In particular, anxiety might be a result of insufficient inhibitory control, pointing towards a major role of the gamma-amino-butyric acid (GABA) system in these disorders. Preclinical and clinical studies discuss a decreased GABAergic inhibition in anxiety and patients with anxiety disorders. In view of these findings it is intriguing that benzodiazepines, which currently represent the most potent and powerful anxiolytic agents, act through an enhancement of GABAergic inhibition targeting the GABAA receptor. Thus, it has been suggested that the GABAergic system might represent a promising future target for new pharmacologic strategies for the treatment of anxiety. Closely linked to the GABAergic system is the endocannabinoid system, which might also play an important role in this group of disorders. The endocannabinoid system has particularly been involved in extinction learning, suggesting a key role of this system in the process of fear extinction. In this paper, both the GABAergic and the endocannabinoid system will be reviewed with regard to their role in anxiety and anxiety disorders in humans with particular attention to findings from genetic and neuroimaging studies. Moreover, both systems will be discussed as potential therapeutic targets.”

http://www.ncbi.nlm.nih.gov/pubmed/19075727

The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system.

“Cannabidiol (CBD), the main non-psychotomimetic component of the plant Cannabis sativa, exerts therapeutically promising effects on human mental health such as inhibition of psychosis, anxiety and depression. However, the mechanistic bases of CBD action are unclear. Here we investigate the potential involvement of hippocampal neurogenesis in the anxiolytic effect of CBD in mice subjected to 14 d chronic unpredictable stress (CUS). Repeated administration of CBD (30 mg/kg i.p., 2 h after each daily stressor) increased hippocampal progenitor proliferation and neurogenesis in wild-type mice. Ganciclovir administration to GFAP-thymidine kinase (GFAP-TK) transgenic mice, which express thymidine kinase in adult neural progenitor cells, abrogated CBD-induced hippocampal neurogenesis. CBD administration prevented the anxiogenic effect of CUS in wild type but not in GFAP-TK mice as evidenced in the novelty suppressed feeding test and the elevated plus maze. This anxiolytic effect of CBD involved the participation of the CB1 cannabinoid receptor, as CBD administration increased hippocampal anandamide levels and administration of the CB1-selective antagonist AM251 prevented CBD actions. Studies conducted with hippocampal progenitor cells in culture showed that CBD promotes progenitor proliferation and cell cycle progression and mimics the proliferative effect of CB1 and CB2 cannabinoid receptor activation. Moreover, antagonists of these two receptors or endocannabinoid depletion by fatty acid amide hydrolase overexpression prevented CBD-induced cell proliferation.

 These findings support that the anxiolytic effect of chronic CBD administration in stressed mice depends on its proneurogenic action in the adult hippocampus by facilitating endocannabinoid-mediated signalling.”

http://www.ncbi.nlm.nih.gov/pubmed/23298518

Molecular reorganization of endocannabinoid signalling in Alzheimer’s disease

“CB1 cannabinoid receptor expression is unchanged in Alzheimer’s disease

Therefore, endocannabinoid signalling networks may represent novel targets to reinstate the precision of synaptic communication under neurodegenerative conditions associated with cognitive deficit.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3069704/

Cannabinoid CB1 receptor stimulation affords neuroprotection in MPTP-induced neurotoxicity by attenuating S100B up-regulation in vitro.

 “…the involvement of the endocannabinoid system was investigated by using selective inhibitors of endocannabinoid inactivation (cellular re-uptake or enzymatic hydrolysis) and selective cannabinoid CB1 and CB2 receptor antagonists and by silencing the CB1 receptor…

 Our data suggest that selective activation of CB1 receptors by either exogenous or endogenous cannabinoids might afford neuroprotection…”

http://www.ncbi.nlm.nih.gov/pubmed/17639288

Enhanced endocannabinoid signaling elevates neuronal excitability in Fragile X syndrome

 “Fragile X syndrome (FXS) results from deficiency of fragile X mental retardation protein (FMRP). FXS is the most common heritable form of mental retardation, and is associated with the occurrence of seizures. Factors responsible for initiating FXS-related hyperexcitability are poorly understood. Many protein-synthesis dependent functions of group I metabotropic glutamate receptors (Gp1 mGluRs) are exaggerated in FXS. Gp1 mGluR activation can mobilize endocannabinoids (eCBs) in the hippocampus and thereby increase excitability, but whether FMRP affects eCBs is unknown. We studied Fmr1 knockout (KO) mice lacking FMRP to test the hypothesis that eCB function is altered in FXS. Whole-cell, evoked inhibitory postsynaptic currents (eIPSCs), and field potentials were recorded in the CA1 region of acute hippocampal slices. Three eCB-mediated responses were examined: depolarization-induced suppression of inhibition (DSI), mGluR-initiated eCB short-term depression of eIPSCs (eCB-iSTD), and eCB-dependent inhibitory long-term depression (eCB-iLTD). Low concentrations of a Gp1 mGluR agonist produced larger eCB-mediated responses in Fmr1 KO mice than in WT mice, without affecting DSI. Western blots revealed that levels of mGluR1, mGluR5, or cannabinoid receptor (CB1R), were unchanged in Fmr1 KO animals, suggesting that the coupling between mGluR activation and eCB mobilization was enhanced by FMRP deletion. The increased susceptibility of Fmr1 KOslices to eCB-iLTD was physiologically relevant, since long-term potentiation of epsp-spike (E-S) coupling induced by the mGluR agonist was markedly larger in Fmr1 KO mice than in WT animals. Alterations in eCB signaling could contribute to the cognitive dysfunction associated with FXS…

The endocannabinoid system could represent another target for intervention in the treatment of FXS.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906112/

The phylogenetic distribution and evolutionary origins of endocannabinoid signalling.

Abstract

“The endocannabinoid signalling system in mammals comprises several molecular components, including cannabinoid receptors (e.g. CB1, CB2), putative endogenous ligands for these receptors [e.g. anandamide, 2-arachidonoylglycerol (2-AG)] and enzymes involved in the biosynthesis and inactivation of anandamide (e.g. NAPE-PLD, FAAH) and 2-AG (e.g. DAG lipase, MGL). In this review we examine the occurrence of these molecules in non-mammalian organisms (in particular, animals and plants) by surveying published data and by basic local alignment search tool (BLAST) analysis of the GenBank database and of genomic sequence data from several vertebrate and invertebrate species. We conclude that the ability of cells to synthesise molecules that are categorised as “endocannabinoids” in mammals is an evolutionarily ancient phenomenon that may date back to the unicellular common ancestor of animals and plants. However, exploitation of these molecules for intercellular signalling may have occurred independently in different lineages during the evolution of the eukaryotes. The CB1- and CB2-type receptors that mediate effects of endocannabinoids in mammals occur throughout the vertebrates, and an orthologue of vertebrate cannabinoid receptors was recently identified in the deuterostomian invertebrate Ciona intestinalis (CiCBR). However, orthologues of the vertebrate cannabinoid receptors are not found in protostomian invertebrates (e.g. Drosophila, Caenorhabditis elegans). Therefore, it is likely that a CB1/CB2-type cannabinoid receptor originated in a deuterostomian invertebrate. This phylogenetic information provides a basis for exploitation of selected non-mammalian organisms as model systems for research on endocannabinoid signalling”

.http://www.ncbi.nlm.nih.gov/pubmed/16596778