CB receptor ligands from plants.

Abstract

“Advances in understanding the physiology and pharmacology of the endogenous cannabinoid system have potentiated the interest of cannabinoid receptors as potential therapeutic targets. Cannabinoids have been shown to modulate a variety of immune cell functions and have therapeutic implications on central nervous system (CNS) inflammation, chronic inflammatory conditions such as arthritis, and may be therapeutically useful in treating autoimmune conditions such as multiple sclerosis. Many of these drug effects occur through cannabinoid receptor signalling mechanisms and the modulation of cytokines and other gene products. Further, endocannabinoids have been found to have many physiological and patho-physiological functions, including mood alteration and analgesia, control of energy balance, gut motility, motor and co-ordination activities, as well as alleviation of neurological, psychiatric and eating disorders. Plants offer a wide range of chemical diversity and have been a growing domain in the search for effective cannabinoid ligands. Cannabis sativa L. with the known plant cannabinoid, Delta(9-)tetrahydrocannabinol (THC) and Echinacea species with the cannabinoid (CB) receptor-binding lipophilic alkamides are the best known herbal cannabimimetics. This review focuses on the state of the art in CB ligands from plants, as well their possible therapeutic and immunomodulatory effects.”

http://www.ncbi.nlm.nih.gov/pubmed/18289087

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Pharmacology of cannabinoid CB1 CB2 receptors.

Abstract

“There are at least two types of cannabinoid receptors, CB1 and CB2, both coupled to G-proteins. CB1 receptors are present in the central nervous system and CB1 and CB2 receptors in certain peripheral tissues. The existence of endogenous cannabinoid receptor agonists has also been demonstrated. These discoveries have led to the development of selective cannabinoid CB1 and CB2 receptor ligands. This review focuses on the classification, binding properties, effector systems and distribution of cannabinoid receptors. It also describes the various cannabinoid receptor agonists and antagonists now available and considers the main in vivo and in vitro bioassay methods that are generally used.”

http://www.ncbi.nlm.nih.gov/pubmed/9336020

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Pharmacology of cannabinoid receptor ligands.

Abstract

“Mammalian tissues contain at least two types of cannabinoid receptor, CB1 and CB2, both coupled to G proteins. CB1 receptors are expressed mainly by neurones of the central and peripheral nervous system whereas CB2 receptors occur in certain non-neuronal tissues, particularly in immune cells. The existence of endogenous ligands for cannabinoid receptors has also been demonstrated. The discovery of this endogenous cannabinoid system has been paralleled by a renewed interest in possible therapeutic applications of cannabinoids, for example in the management of pain and in the suppression of muscle spasticity/spasm associated with multiple sclerosis or spinal cord injury. It has also prompted the development of a range of novel cannabinoid receptor ligands, including several that show marked selectivity for CB1 or CB2 receptors. This review summarizes current knowledge about the in vitro pharmacological properties of important CB1 and CB2 receptor ligands. Particular attention is paid to the binding properties of these ligands, to the efficacies of cannabinoid receptor agonists, as determined using cyclic AMP or [35S]GTPgammaS binding assays, and to selected examples of how these pharmacological properties can be influenced by chemical structure. The in vitro pharmacological properties of ligands that can potently and selectively oppose the actions of CB1 or CB2 receptor agonists are also described. When administered by themselves, some of these ligands produce effects in certain tissue preparations that are opposite in direction to those produced by cannabinoid receptor agonists and the possibility that the ligands producing such inverse cannabimimetic effects are inverse agonists rather than pure antagonists is discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/10469884

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Ligands that target cannabinoid receptors in the brain: from THC to anandamide and beyond.

Abstract

“A major finding–that (-)-trans-Delta(9)-tetrahydrocannabinol (Delta(9)-THC) is largely responsible for the psychotropic effects of cannabis–prompted research in the 1970s and 1980s that led to the discovery that this plant cannabinoid acts through at least two types of cannabinoid receptor, CB(1) and CB(2), and that Delta(9)-THC and other compounds that target either or both of these receptors as agonists or antagonists have important therapeutic applications. It also led to the discovery that mammalian tissues can themselves synthesize and release agonists for cannabinoid receptors, the first of these to be discovered being arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol. These ‘endocannabinoids’ are released onto their receptors in a manner that appears to maintain homeostasis within the central nervous system and sometimes either to oppose or to mediate or exacerbate the unwanted effects of certain disorders. This review provides an overview of the pharmacology of cannabinoid receptors and their ligands. It also describes actual and potential clinical uses both for cannabinoid receptor agonists and antagonists and for compounds that affect the activation of cannabinoid receptors less directly, for example by inhibiting the enzymatic hydrolysis of endocannabinoids following their release.”

http://www.ncbi.nlm.nih.gov/pubmed/18482430

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The pharmacology of cannabinoid receptors and their ligands: an overview.

Abstract

“Mammalian tissues express at least two cannabinoid receptor types, CB1 and CB2, both G protein coupled. CB1 receptors are found predominantly at nerve terminals where they mediate inhibition of transmitter release. CB2 receptors occur mainly on immune cells, one of their roles being to modulate cytokine release. Endogenous agonists for cannabinoid receptors also exist, and are all eicosanoids. The first-discovered of these ‘endocannabinoids’ was arachidonoylethanolamide and there is convincing evidence that this ligand and some of its metabolites can activate vanilloid VRI (TRPV1) receptors. Certain cannabinoids also appear to have TRPV1-like and/or non-CB1, non-CB2, non-TRPV1 targets. Several CB1- and CB2-selective agonists and antagonists have been developed. Antagonists include the CB1-selective SR141716A, AM251, AM281 and LY320135, and the CB2-selective SR144528 and AM630. These all behave as inverse agonists, one indication that CB1 and CB2 receptors can exist in a constitutively active state. ‘Neutral’ cannabinoid receptor antagonists have also been developed. CB1 and/or CB2 receptor activation appears to ameliorate inflammatory and neuropathic pain and certain multiple sclerosis symptoms. This might be exploited clinically by using CB1, CB2 or CB1/CB2 agonists, or inhibitors of the membrane transport or catabolism of endocannabinoids that are released in increased amounts, at least in animal models of pain and multiple sclerosis. We have recently discovered the presence of an allosteric site on the CB1 receptor. Consequently, it may also prove possible to enhance ‘autoprotective’ effects of released endocannabinoids with CB1 allosteric enhancers or, indeed, to reduce proposed ‘autoimpairing’ effects of released endocannabinoids such as excessive food intake with CB1 allosteric antagonists.”

http://www.ncbi.nlm.nih.gov/pubmed/16570099

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid receptors and their ligands.

Abstract

“There are at least two types of cannabinoid receptors, CB(1) and CB(2), both coupled to G proteins. CB(1) receptors exist primarily on central and peripheral neurons, one of their functions being to modulate neurotransmitter release. CB(2) receptors are present mainly on immune cells. Their roles are proving more difficult to establish but seem to include the modulation of cytokine release. Endogenous agonists for cannabinoid receptors (endocannabinoids) have also been discovered, the most important being arachidonoyl ethanolamide (anandamide), 2-arachidonoyl glycerol and 2-arachidonyl glyceryl ether. Other endocannabinoids and cannabinoid receptor types may also exist. Although anandamide can act through CB(1) and CB(2) receptors, it is also a vanilloid receptor agonist and some of its metabolites may possess yet other important modes of action. The discovery of the system of cannabinoid receptors and endocannabinoids that constitutes the “endocannabinoid system” has prompted the development of CB(1)- and CB(2)-selective agonists and antagonists/inverse agonists. CB(1)/CB(2) agonists are already used clinically, as anti-emetics or to stimulate appetite. Potential therapeutic uses of cannabinoid receptor agonists include the management of multiple sclerosis/spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, vasodilation that accompanies advanced cirrhosis, and cancer. Following their release onto cannabinoid receptors, endocannabinoids are removed from the extracellular space by membrane transport and then degraded by intracellular enzymic hydrolysis. Inhibitors of both these processes have been developed. Such inhibitors have therapeutic potential as animal data suggest that released endocannabinoids mediate reductions both in inflammatory pain and in the spasticity and tremor of multiple sclerosis. So too have CB(1) receptor antagonists, for example for the suppression of appetite and the management of cognitive dysfunction or schizophrenia.”

http://www.ncbi.nlm.nih.gov/pubmed/12052030

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Therapeutic potential of cannabinoid receptor ligands: current status.

Abstract

“There are at least two types of cannabinoid receptors, CB1 also named CNR1 and CB2 also named CNR2, both coupled to G proteins. CB1 receptors exist primarily on central and peripheral neurons. CB2 receptors are present mainly on immune cells. Endogenous agonists for cannabinoid receptors (endocannabinoids) have also been discovered, the most important being arachidonoyl ethanolamide (anandamide), 2-arachidonoyl glycerol (2-AG), and 2-archidonyl glyceryl ether. Following their release, endocannabinoids are removed from the extracellular space and then degraded by intracellular enzymic hydrolysis. CB1/CB2 agonists are already used clinically as antiemetic or to stimulate appetite. Potential therapeutic uses of cannabinoid receptor agonists include the management of multiple sclerosis, spinal cord injury, pain, inflammatory disorders, glaucoma, bronchial asthma, vasodilatation that accompanies advanced cirrhosis, and cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/16810344

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous