Who Benefits Most from THC:CBD Spray? Learning from Clinical Experience.

“In this article, real-life data from clinical practice showing specific aspects relating to use of 9-delta-tetrahydocannabinol and cannabidiol (THC:CBD) oromucosal spray (Sativex®) in patients with moderate to severe spasticity resistant to usual therapy will be presented…

These case reports highlight the diverse nature of the MS spasticity population and they show the possible usefulness of THC:CBD oromucosal spray in individual patients with moderate to severe spasticity resistant to existing therapies…

Perhaps the most important finding is the possibility of obtaining relevant improvements in QoL/ADL (quality of life/activities of daily living) in some patients with resistant MS spasticity, allowing them to engage back in physical and social activities.”

http://www.ncbi.nlm.nih.gov/pubmed/24457847

THC:CBD Spray and MS Spasticity Symptoms: Data from Latest Studies.

“New clinical experience with 9-delta-tetrahydocannabinol (THC) and cannabidiol (CBD) oromucosal spray (Sativex®)…

A randomized, placebo controlled long-term follow-up clinical trial with THC:CBD spray versus placebo demonstrated that it was not associated with cognitive decline, depression or significant mood changes…

THC:CBD oromucosal spray did not adversely influence standard driving ability in patients with moderate to severe MS spasticity…

Findings to date reinforce the efficacy and safety observed in Phase III clinical trials…

Importantly, no additional safety concerns were identified…

Thus, these new data support a positive benefit-risk relationship for THC:CBD oromucosal spray during longer-term use.”

http://www.ncbi.nlm.nih.gov/pubmed/24457846

Nabiximols as an Agonist Replacement Therapy During Cannabis Withdrawal: A Randomized Clinical Trial.

“The cannabis extract nabiximols (Sativex), developed as a multiple sclerosis treatment, offers a potential agonist medication for cannabis withdrawal…

Nabiximols treatment significantly reduced the overall severity of cannabis withdrawal…

The data support further evaluation of nabiximols for management of cannabis dependence and withdrawal in treatment-seeking populations.”

http://www.ncbi.nlm.nih.gov/pubmed/24430917

Δ(9)-THC and N-arachidonoyl glycine regulate BV-2 microglial morphology and cytokine release plasticity: implications for signaling at GPR18.

“Microglial cells are extremely plastic and undergo a variety of CNS-prompted shape changes relative to their location and current role. Signaling molecules from neurons also regulate microglial cytokine production. Neurons are known to employ the endogenous cannabinoid system to communicate with other cells of the CNS.

N-arachidonoyl glycine (NAGly) and Δ(9)-tetrahydrocannabinol (Δ(9)-THC) signaling via GPR18 has been introduced as an important new target in microglial-neuronal communication…

These data add to an emerging profile that emphasizes NAGly as a component of an endogenous system present in the CNS that tightly integrates microglial proliferation, recruitment, and adhesion with neuron-glia interactivity and tissue remodeling.”

http://www.ncbi.nlm.nih.gov/pubmed/24427137

A double-blind, randomized, placebo-controlled, parallel group study of THC/CBD spray in peripheral neuropathic pain treatment.

“Peripheral neuropathic pain (PNP) associated with allodynia poses a significant clinical challenge. The efficacy of Δ9 -tetrahydrocannabinol/cannabidiol (THC/CBD) oromucosal spray, a novel cannabinoid formulation, was investigated in this 15-week randomized, double-blind, placebo-controlled parallel group study…

These findings demonstrate that, in a meaningful proportion of otherwise treatment-resistant patients, clinically important improvements in pain, sleep quality and SGIC of the severity of their condition are obtained with THC/CBD spray. THC/CBD spray was well tolerated and no new safety concerns were identified.”

http://www.ncbi.nlm.nih.gov/pubmed/24420962

Modulation of Gut-Specific Mechanisms by Chronic Δ9-THC Administration in Male Rhesus Macaques Infected with Simian Immunodeficiency Virus: A Systems Biology Analysis.

“Our studies have demonstrated that chronic Δ9-tetrahydrocannabinol (THC) administration results in a generalized attenuation of viral load and tissue inflammation in simian immunodeficiency virus (SIV)-infected male rhesus macaques…

Our results indicate that chronic THC treatment modulated duodenal T cell populations, favored a pro-Th2 cytokine balance, and decreased intestinal apoptosis.

These findings reveal novel mechanisms that may potentially contribute to cannabinoid-mediated disease modulation.”

http://www.ncbi.nlm.nih.gov/pubmed/24400995

“Previous studies from our laboratory have shown that chronic THC administration ameliorates SIV disease progression and significantly reduces the morbidity and mortality of male SIV-infected macaques… In summary, using a systems biology approach to understanding the impact of chronic cannabinoid treatment on gut-associated immunopathology, we identified relevant mechanisms that can potentially modulate disease progression. Our results suggest that gut immunomodulation through changes in gene expression, cytokine profiles, and immune cell populations could potentially contribute to chronic THC modulation of SIV disease progression. Moreover, they reveal novel mechanisms that may potentially contribute to decreased morbidity and mortality.”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4046212/

Clinical experience with THC:CBD oromucosal spray in patients with multiple sclerosis-related spasticity.

“This detailed medical charts’ data collection study conducted at an MS clinic in Germany evaluated the effectiveness of tetrahydrocannabinol (THC) / cannabidiol (CBD) oromucosal spray in patients with resistant multiple sclerosis (MS) spasticity…

In this routine clinical practice setting at an MS clinic in Germany, THC:CBD spray was effective and well tolerated as add-on therapy or as monotherapy in a relevant proportion of patients with resistant MS spasticity.”

http://www.ncbi.nlm.nih.gov/pubmed/24392812

Sativex(®) (tetrahydrocannabinol + cannabidiol), an endocannabinoid system modulator: basic features and main clinical data.

“Sativex(®) (nabiximols, USAN name) oromucosal spray contains the two main active constituents of Cannabis sativa, tetrahydrocannabinol and cannabidiol in a 1:1 molecular ratio, and acts as an endocannabinoid system modulator. Randomized, controlled clinical trials of Sativex as add-on therapy provide conclusive evidence of its efficacy in the treatment of more than 1500 patients with multiple sclerosis (MS)-related resistant spasticity…

Sativex oromucosal spray appears to be a useful and welcomed option for the management of resistant spasticity in MS patients. Although the management of MS has been improved by the availability of disease-modifying agents that target the underlying pathophysiological processes of the disease, a clear need remains for more effective symptomatic treatments, especially as regards MS-related spasticity and pain.”

http://www.ncbi.nlm.nih.gov/pubmed/21449855

Endocannabinoid pathways and their role in multiple sclerosis-related muscular dysfunction.

“Modulation of the endocannabinoid system has been shown to have therapeutic potential in a number of disease states.

Sativex(®) (nabiximols, USAN name) contains the two main phytocannabinoids from Cannabis sativa, tetrahydrocannabinol and cannabidiol in a 1:1 ratio, and it acts as an endocannabinoid system modulator.

In an experimental mouse model of MS-related spasticity, Sativex dose-dependently improved hind limb flexion/stiffness and a dosage of 10 mg/kg was shown to be as effective as the most widely established anti-spasticity treatment baclofen (5 mg/kg).

These findings with Sativex are very promising and offer encouragement for MS patients, the majority of whom will develop spasticity-related disabling and recalcitrant symptoms. Furthermore, research into the endocannabinoid system may offer potential in other neurodegenerative, inflammatory and pain disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/21449854

Endocannabinoids: a unique opportunity to develop multitarget analgesics.

“After 4 millennia of more or less documented history of cannabis use, the identification of cannabinoids, and of Δ(9)-tetrahydrocannabinol in particular, occurred only during the early 1960s, and the cloning of cannabinoid CB1 and CB2 receptors, as well as the discovery of endocannabinoids and their metabolic enzymes, in the 1990s.

Despite this initial relatively slow progress of cannabinoid research, the turn of the century marked an incredible acceleration in discoveries on the “endocannabinoid signaling system,” its role in physiological and pathological conditions, and pain in particular, its pharmacological targeting with selective agonists, antagonists, and inhibitors of metabolism, and its previously unsuspected complexity.

The way researchers look at this system has thus rapidly evolved towards the idea of the “endocannabinoidome,” that is, a complex system including also several endocannabinoid-like mediators and their often redundant metabolic enzymes and “promiscuous” molecular targets.

These peculiar complications of endocannabinoid signaling have not discouraged efforts aiming at its pharmacological manipulation, which, nevertheless, now seems to require the development of multitarget drugs, or the re-visitation of naturally occurring compounds with more than one mechanism of action.

In fact, these molecules, as compared to “magic bullets,” seem to offer the advantage of modulating the “endocannabinoidome” in a safer and more therapeutically efficacious way.

This approach has provided so far promising preclinical results potentially useful for the future efficacious and safe treatment of chronic pain and inflammation.”

http://www.ncbi.nlm.nih.gov/pubmed/23623250