Tel Aviv University researchers find chemicals in marijuana could help treat MS

“Multiple sclerosis is an inflammatory disease in which the immune system attacks the nervous system. The result can be a wide range of debilitating motor, physical, and mental problems. No one knows why people get the disease or how to treat it.

In a new study published in the Journal of Neuroimmune Pharmacology, Drs. Ewa Kozela, Ana Juknat, Neta Rimmerman and Zvi Vogel of Tel Aviv University’s Dr. Miriam and Sheldon G. Adelson Center for the Biology of Addictive Diseases and Sackler Faculty of Medicine demonstrate that some chemical compounds found in marijuana can help treat MS-like diseases in mice by preventing inflammation in the brain and spinal cord…”

More: http://www.news-medical.net/news/20131008/Tel-Aviv-University-researchers-find-chemicals-in-marijuana-could-help-treat-MS.aspx

“Cannabinoids Decrease the Th17 Inflammatory Autoimmune Phenotype” http://link.springer.com/article/10.1007/s11481-013-9493-1

Parkinson’s Symptoms Reduced by Smoking Cannabis – Parkinson Research Foundation

Cannabis_Clones_in_Box

 “Ruth Djaldetti, M.D., of Tel Aviv University in Israel, presented the findings of her research at a recent International Congress on Parkinson’s Disease and Movement Disorders.  She reported improvement in tremor, pain, rigidity and bradykinesia (slowness of movement).  Twenty subjects, all in their mid-sixties, and were rated using the Unified Parkinson’s Disease Rating Scale (UPDRS) both before and after smoking.  Their overall “before” scores were over 30 and within 30 minutes of smoking, their scores dropped to 24..  Their tremor scores averaged 7.5 on the UPDRS before and dropped to a score of 3.5 after smoking cannabis.  Bradykinesia scores dropped from 13.2 to 8.6 and rigidity went from 7.4 to 6.4.  Dr. Djaldetti also saw a marked relief in the pain her subjects were experiencing and this relief of pain led to better sleep and feeling more rested.

This bears out the results of other studies.  A study done in Great Britain that was published in 2011 found the principal ingredient in cannabis provided neuroprotection for people with Parkinson’s disease.  Its neuroprotective properties included reduction of inflammation and control of spasms, making it an ideal drug for treating Parkinson’s.  However, its confusing legal status make it very difficult for people to obtain or consider using and for doctors to even recommend to patients.

Another interesting study done in 2010 found that cannabinoid receptors are located in many parts of the brain and that cannabinoids are produced naturally in the brain.  People with Parkinson’s have even higher levels of endocannabinoids (cannabinoids produced within the brain).  The main ingredient in cannabis, Tetrahydrcannibol (THC) actually increases dopamine production temporarily.  Cannabidiol (CBD) another component of cannabis, also provides neuroprotective properties and has been shown to reduce dystonias .  CDB could be a very vital improvement for treating Parkinson’s, and a recent study has shown it useful in treating certain cancers as well.

While there have been many, many people reporting the anecdotal benefits of smoking cannabis, clinical trials are lagging behind.  Laboratory and animal studies have shown many benefits, but perplexing issues around the legality of cannabis are slowing the efforts and impeding progress.”

http://parkinsonresearchfoundation.org/blog/2013/07/11/parkinsons-symptoms-reduced-by-smoking-cannabis/

Cannabidiol (CBD) Shown To Kill Breast Cancer Cells

 “Cannabidiol (CBD) has been on the receiving end of a lot of attention from the scientific community for several decades now. However, it is only now that we are really starting to begin to get a grasp on how wonderful this cannabinoid truly is.

 

A study from 2011 states that cannabidiol is considered an antineoplastic agent on the basis of its in vitro and in vivo activity against tumor cells. However, the exact molecular mechanism through which CBD works in this capacity is yet to be understood. The study, titled “Cannabidiol Induces Programmed Cell Death in Breast Cancer Cells by Coordinating the Cross-talk between Apoptosis and Autophagy,” focuses on how CBD can kill breast cancer cells. Breast cancer is the second leading cause of cancer-related death in women in the United States.

What the scientists found was that CBD influences apoptosis by interacting with a key protein, called beclin-1, found within the cancerous cell. Beclin-1 is also known to play a key role in autophagy, or cellular self-degradation of non-vital components, which may lead to programmed cell death. This causes a distortion of the electrical signals between the outer mitochondrial membrane and the rest of the cell, disrupting the transfer to the cell interior of certain molecules that are necessary for metabolism. What this means is that the cell cannot transfer energy, and the cell starves to death, and in doing so activates the self-destruction process of apoptosis.

The study concludes by stating, “In summary, we showed that CBD, a plant-derived cannabinoid, preferentially kills breast cancer cells by inducing ER stress, inhibiting mTOR signaling, enhancing ROS generation, and mediating a complex balance between autophagy and mitochondria-mediated apoptosis in MDA-MB-231 breast cancer cells. These findings support the continued exploration of CBD as an alternative agent for breast cancer treatment.””

http://cbdgum.networkofhemp.com/cannabidiol-cbd-shown-to-kill-breast-cancer-cells/

“Cannabidiol Induces Programmed Cell Death in Breast Cancer Cells by Coordinating the Cross-talk between Apoptosis and Autophagy… In summary, we showed that CBD, a plant-derived cannabinoid, preferentially kills breast cancer cells…” http://mct.aacrjournals.org/content/10/7/1161.full

Clinical experiences with cannabinoids in spasticity management in multiple sclerosis.

“Spasticity is a common symptom among patients with multiple sclerosis (MS). This study aims to assess the effectiveness and safety of the combination of delta-9-tetrahydrocannabinol (THC) and cannabidiol (CBD) in clinical practice for the treatment of spasticity in MS…

Retrospective observational study with patients treated with inhaled THC/CBD…

 THC/CBD was effective in 80% of patients…

CONCLUSIONS:

THC/CBD appears to be a good alternative to standard treatment as it improves refractory spasticity in MS and has an acceptable toxicity profile.”

http://www.ncbi.nlm.nih.gov/pubmed/24035293

Treatment of spasticity in multiple sclerosis: new perspectives regarding the use of cannabinoids.

“Spasticity remains a prevalent symptom in multiple sclerosis, with a significant associated disability and quality of life impairment… Cannabinoids provide a new way for therapy.

A delta-9-tetrahydrocannabinol plus cannabidiol (1:1) association, administered through an oromucosal route, has been approved in several countries including Spain; it causes a specific effect on CB(1) and CB(2) receptors, with traditional psychotropic cannabis actions being minimized.

Randomized, placebo-controlled trials, as well as longer-term open-label extensions, have shown a clear-cut efficacy to reduce spasticity and their associated symptoms in those patients refractory to other therapies, with a good tolerability/safety profile.

No tolerance, abuse or addictive issues have been found…”

http://www.ncbi.nlm.nih.gov/pubmed/23011861

Cannabidiol-Induced Apoptosis in Human Leukemia Cells: A Novel Role of Cannabidiol in the Regulation of p22phox and Nox4 Expression

“Marijuana has been suggested as a potent therapeutic agent alleviating such complications as intraocular pressure in glaucoma and cachexia, nausea, and pain in AIDS and cancer patients. A number of recent studies now suggest the possible use of these compounds for the treatment of cannabinoid receptor-expressing tumors…

In the current study, we examined the effects of the nonpsychoactive cannabinoid, cannabidiol, on the induction of apoptosis in leukemia cells. Exposure of leukemia cells to cannabidiol led to cannabinoid receptor 2 (CB2)-mediated reduction in cell viability and induction in apoptosis. Furthermore, cannabidiol treatment led to a significant decrease in tumor burden and an increase in apoptotic tumors in vivo…

Together, the results from this study reveal that cannabidiol, acting through CB2 and regulation of Nox4 and p22phox expression, may be a novel and highly selective treatment for leukemia…

In summary, the current study demonstrates that CBD-induced apoptosis may constitute a novel approach to treat malignancies of the immune system…”

Full text: http://molpharm.aspetjournals.org/content/70/3/897.long

Cannabidiol, unlike synthetic cannabinoids, triggers activation of RBL-2H3 mast cells

“Plant-derived cannabinoids, such as Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), the main psychoactive and nonpsychoactive components of cannabis, respectively, possess myriad pharmacological properties…

Cannabidiol (CBD), a prominent psychoinactive component of cannabis with negligible affinity for known cannabinoid receptors, exerts numerous pharmacological actions, including anti-inflammatory and immunosuppressive effects…

Together, these results support existence of yet-to-be identified sites of interaction, i.e., receptors and/or ion channels associated with Ca2+ influx of natural cannabinoids such as CBD and THC, the identification of which has the potential to provide for novel strategies and agents of therapeutic interest.”

Full text: http://www.jleukbio.org/content/81/6/1512.long

Gamma-irradiation enhances apoptosis induced by cannabidiol, a non-psychotropic cannabinoid, in cultured HL-60 myeloblastic leukemia cells.

“Two non-psychotropic cannabinoids, cannabidiol (CBD) and cannabidiol-dimethylheptyl (CBD-DMH), induced apoptosis in a human acute myeloid leukemia (AML) HL-60 cell line…

  Caspase-3 activation was observed after the cannabinoid treatment, and may represent a mechanism for the apoptosis.

Our data suggest a possible new approach to treatment of AML.”

http://www.ncbi.nlm.nih.gov/pubmed/14692532

Therapeutic potential of cannabinoid medicines.

Drug Testing and Analysis

“Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines.

The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology.

In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/24006213

http://onlinelibrary.wiley.com/doi/10.1002/dta.1529/abstract

Protective effect of cannabidiol against cadmium hepatotoxicity in rats.

“The protective effect of cannabidiol, the non-psychoactive component of Cannabis sativa, against liver toxicity induced by a single dose of cadmium chloride was investigated in rats…

 It was concluded that cannabidiol may represent a potential option to protect the liver tissue from the detrimental effects of cadmium toxicity.”

http://www.ncbi.nlm.nih.gov/pubmed/23993482