Researcher explores effects of cannabinoids on blood pressure

Andrei Derbenev, associate professor of physiology, Tulane School of Medicine

“Hypertension — or high blood pressure — is a long-term, high-risk condition for millions of people worldwide.

At the moment, synthetic beta-blockers are one of the most common drugs prescribed to treat hypertension.

But what if a natural drug, marijuana, which has been known for 5,000 years, could be used in the treatment of high blood pressure?

Andrei Derbenev, associate professor of physiology in the Tulane University School of Medicine, recently received a four-year, $1.5 million research grant from the National Institutes of Health to study how cannabinoids — the compounds of cannabis (another name for marijuana) — affect a brain stem area involved in blood pressure control.

His research may have important clinical applications for the treatment of hypertension.

He is identifying the cells in the sympathetic nervous system linked to the kidneys, a key organ in hypertension. (The sympathetic nervous system is the part of the autonomic nervous system that stimulates the body’s “fight or flight” response. Overactivity of the sympathetic nervous system is a cause of high blood pressure.)

He and his research team are studying the effect of exogenous cannabinoids — from the marijuana plant — and endogenous cannabinoids —those naturally produced within the body.

Cannabis “has lots of different chemicals inside. Some of them are painkillers. Some of them, we don’t know what they are doing.”

People ask Derbenev all the time: Is marijuana good? Is it bad? But the debate, he says, should be, instead, “Which works? Which does not work?”

About a decade ago, Derbenev led a study about the effect of cannabinoids on the parasympathetic nervous system, the part of the autonomic nervous system that stimulates the body to “rest and digest.” In that investigation, his team showed the mechanism by which cannabis can reduce digestive spasms and thus decrease vomiting. It’s a finding of great interest to cancer patients experiencing nausea while undergoing chemotherapy.”

https://news.tulane.edu/news/researcher-explores-effects-cannabinoids-blood-pressure

Marijuana fights Alzheimer’s disease, Salk Institute scientists discover

Cannabinoids remove plaque-forming Alzheimer's proteins from brain cells

“Salk Institute scientists have discovered that a main compound found in marijuana can fight a toxic protein associated with Alzheimer’s disease. According to the scientists, at this time, there are no drugs that significantly inhibit cell death associated with Alzheimer’s disease (AD), Parkinson’s or Huntington’s diseases. However, the most recent data about Alzheimer’s and marijuana suggests that there is a therapeutic potential of cannabinoids (the chemical compounds secreted by cannabis flowers) for the treatment of AD. Cannabinoids are able to remove plaque-forming Alzheimer’s proteins from brain cells, reports the Medical Express on June 29.”  http://www.examiner.com/article/marijuana-fights-alzheimer-s-disease-salk-institute-scientists-discover

“Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells”  http://medicalxpress.com/news/2016-06-cannabinoids-plaque-forming-alzheimer-proteins-brain.html

“Cannabinoids remove toxic proteins associated with Alzheimer’s disease from the brain” http://www.irishexaminer.com/examviral/science-world/cannabinoids-remove-toxic-proteins-associated-with-alzheimers-disease-from-the-brain-407788.html

“Marijuana Compound Helps Remove Alzheimer’s Disease Protein From Brain” -brain.” http://www.scienceworldreport.com/articles/42990/20160630/marijuana-compound-helps-remove-alzheimers-disease-protein-from-brain.htm

“Marijuana compound removes toxic Alzheimer’s protein from the brain”  http://www.sciencealert.com/marijuana-compound-removes-toxic-alzheimer-s-protein-from-the-brain

“Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells”  https://www.sciencedaily.com/releases/2016/06/160629095609.htm

“Cannabinoids Remove Plaque-forming Alzheimer’s Proteins from Brain Cells”  https://www.laboratoryequipment.com/news/2016/06/cannabinoids-remove-plaque-forming-alzheimers-proteins-brain-cells

“MARIJUANA COMPOUND REMOVES ALZHEIMER’S PLAQUE FROM BRAIN CELLS, STUDY FINDS” http://www.popsci.com/marijuana-compound-removes-alzheimers-plaque-from-brain-cells-study

“Cannabinoids remove plaque-forming Alzheimer’s proteins from brain cells. Preliminary lab studies at the Salk Institute find THC reduces beta amyloid proteins in human neurons.” http://www.salk.edu/news-release/cannabinoids-remove-plaque-forming-alzheimers-proteins-from-brain-cells/

 

Cannabidiol monotherapy for treatment-resistant schizophrenia

SJO banner

“Cannabidiol (CBD), one of the major products of the marijuana plant, is devoid of marijuana’s typical psychological effects. In contrast, potential antipsychotic efficacy has been suggested based on preclinical and clinical data.

In this report, we further investigated the efficacy and safety of CBD monotherapy in three patients with treatment-resistant schizophrenia (TRS).

Efficacy, tolerability and side effects were assessed.

All patients tolerated CBD very well and no side effects were reported.

These preliminary data suggest that CBD monotherapy may not be effective for TRS.”

http://jop.sagepub.com/content/20/5/683.short

Pot a Common Remedy to Ease Back Pain

“Use of marijuana to ease back pain was common among patients at a university spine clinic in Colorado where pot has been legal for medical purposes since 2000, but most of the users did not have a prescription, according to research presented here.

Among 184 patients at a Colorado spine center, 19% said they used marijuana for pain relief, but less than half, 46%, actually had a prescription for the drug, according to study co-author Michael Finn, MD, an assistant professor of neurosurgery at the University of Colorado in Denver.

The most common way to use the drug was smoking it, 90%, followed by oral ingestion, 45%, and vaporization, 29%.

According to the users, marijuana worked. A total of 89% said it greatly or moderately relived their pain, and 81% said it worked as well as or better than narcotic painkillers.”

http://www.medpagetoday.com/MeetingCoverage/AdditionalMeetings/42228

Autophagy activation by novel inducers prevents BECN2-mediated drug tolerance to cannabinoids.

“Cannabinoids and related drugs generate profound behavioral effects (such as analgesic effects) through activating CNR1 (cannabinoid receptor 1 [brain]). However, repeated cannabinoid administration triggers lysosomal degradation of the receptor and rapid development of drug tolerance, limiting the medical use of marijuana in chronic diseases.

Here we show that a protein involved in macroautophagy/autophagy (a conserved lysosomal degradation pathway), BECN2 (beclin 2), mediates cannabinoid tolerance by preventing CNR1 recycling and resensitization after prolonged agonist exposure, and deletion of Becn2 rescues CNR1 activity in mouse brain and conveys resistance to analgesic tolerance to chronic cannabinoids.

Overall, our findings demonstrate the functional link among autophagy, receptor signaling and animal behavior regulated by psychoactive drugs, and develop a new strategy to prevent tolerance and improve medical efficacy of cannabinoids by modulating the BECN2 interactome and autophagy activity.”

http://www.ncbi.nlm.nih.gov/pubmed/27305347

Indirect modulation of the endocannabinoid system by specific fractions of nutmeg total extract.

“Nutmeg [Myristica fragrans Houtt. (Myristicaceae)] has a long-standing reputation of psychoactivity. Anecdotal reports of nutmeg use as a cheap marijuana substitute, coupled to previous studies reporting a cannabimimetic-like action, suggest that nutmeg may interact with the endocannabinoid system.

The study provides the first piece of evidence that nutmeg interacts with the endocannabinoid system via inhibition of the endocannabinoid catabolizing enzymes. This mechanism provides insight into reported cannabis-like action as well as expands the potential therapeutic utility of nutmeg.”

http://www.ncbi.nlm.nih.gov/pubmed/27296774

Cannabinoids cool the intestine

Logo of nihpa

“Inflammatory bowel diseases (IBDs) such as ulcerative colitis and Crohn’s disease affects over a million people in the United States, with an estimated indirect cost from work loss of $3.6 billion annually. Many of these individuals suffer from pain, diarrhea and poor ability to digest their food, and in up to half of those with IBD, the disease is so severe that it ultimately requires surgery to remove the affected bowel segment.

Historically, marijuana has been used to treat diarrhea and has been advocated for the treatment of a variety of other gastrointestinal problems, including Crohn’s disease.

More recent pharmacological studies have clearly established that cannabinoids inhibit gastrointestinal motility and secretion by acting on CB1 receptors located on the terminals of both intrinsic and extrinsic submucosal neurons.

When administered to mice with chemically induced enteritis, cannabinoids also reduce inflammation and fluid accumulation in the gut.

Cannabinoids inhibit motility and secretion in the intestine.

They are now assigned the additional task of curbing excessive inflammation, suggesting that drugs targeting the endogenous cannabinoid system could be exploited for inflammatory bowel disease.

These findings may offer a new therapeutic approach to IBD.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2516444/

 

Dronabinol for chemotherapy-induced nausea and vomiting unresponsive to antiemetics.

“Chemotherapy-induced nausea and vomiting (CINV) is one of the most common symptoms feared by patients, but may be prevented or lessened with appropriate medications.

Several antiemetic options exist to manage CINV. Corticosteroids, serotonin receptor antagonists, and neurokinin receptor antagonists are the classes most commonly used in the prevention of CINV. There are many alternative drug classes utilized for the prevention and management of CINV such as antihistamines, benzodiazepines, anticonvulsants, cannabinoids, and dopamine receptor antagonists.

Medications belonging to these classes generally have lower efficacy and are associated with more adverse effects. They are also not as well studied compared to the aforementioned agents.

This review will focus on dronabinol, a member of the cannabinoid class, and its role in CINV.

Cannabis sativa L. (also known as marijuana) contains naturally occurring delta-9-tetrahydrocannibinol (delta-9-THC). The synthetic version of delta-9-THC is the active ingredient in dronabinol that makes dronabinol an orally active cannabinoid.

Evidence for clinical efficacy of dronabinol will be analyzed in this review as monotherapy, in combination with ondansetron, and in combination with prochlorperazine.”

http://www.ncbi.nlm.nih.gov/pubmed/27274310

RNA-seq analysis of delta -9-tetrahydrocannabinol-treated T cells reveals altered gene expression profiles that regulate immune response and cell proliferation.

“Marijuana has drawn significant public attention and concern both for its medicinal and recreational use. Δ9-tetrahydrocannabinol (THC), which is the main bioactive component in marijuana, has also been shown to possess potent anti-inflammatory properties by virtue of its ability to activate cannabinoid receptor-2 (CB-2) expressed on immune cells.

In this study, we used RNA-seq to quantify the transcriptomes and transcript variants that are differentially regulated by THC in super antigen-activated lymph node cells and CD4+ T cells. We found that the expressions of many transcripts were altered by THC in both total lymph node cells and CD4+ T cells. Furthermore, the abundance of many miRNA precursors and long non-coding RNAs was dramatically altered in THC treated mice. For example, the expression of miR-17/92 cluster and miR-374b/421 cluster was down regulated by THC. On the other hand miR-146a which has been shown to induce apoptosis was up regulated by THC. Long non-coding RNAs that are expressed from the opposite strand of CD27 and Appbp2 were induced by THC.

In addition, THC treatment also caused alternative promoter usage and splicing. The functions of those altered transcripts were mainly related to immune response and cell proliferation.”

http://www.ncbi.nlm.nih.gov/pubmed/27268054

Clinical Effects of Synthetic Cannabinoid Receptor Agonists Compared with Marijuana in Emergency Department Patients with Acute Drug Overdose.

“Synthetic cannabinoid receptor agonists (SCRAs) are heterogeneous compounds originally intended as probes of the endogenous cannabinoid system or as potential therapeutic agents.

In the first clinical study comparing the adverse effects of SCRA overdose vs. marijuana controls in an ED population, we found that SCRA overdoses had significantly pronounced neurotoxicity and cardiotoxicity compared with marijuana.”

http://www.ncbi.nlm.nih.gov/pubmed/27255136