Emerging targets in treating pain.

“Chronic pain poses an enormous socioeconomic burden for the more than 30% of people who suffer from it, costing over $600 billion per year in the USA. In recent years, there has been a surge in preclinical and clinical research endeavors to try to stem this epidemic. Preclinical studies have identified a wide array of potential targets, with some of the most promising translational research being performed on novel opioid receptors, cannabinoid receptors, selective ion channel blockers, cytokine inhibitors, nerve growth factor inhibitors, N-methyl-D-aspartate receptor antagonists, glial cell inhibitors, and bisphosphonates.

SUMMARY:

There are many obstacles for the development of effective medications to treat chronic pain, including the inherent challenges in identifying pathophysiological mechanisms, the overlap and multiplicity of pain pathways, and off-target adverse effects stemming from the ubiquity of drug target receptor sites and the lack of highly selective receptor ligands. Despite these barriers, the number and diversity of potential therapies have continued to grow, to include disease-modifying and individualized drug treatments.”

http://www.ncbi.nlm.nih.gov/pubmed/26087270

http://www.thctotalhealthcare.com/category/pain-2/

Pharmacologic effects of cannabidiol on acute reperfused myocardial infarction in rabbits: evaluated with 3.0T cardiac magnetic resonance imaging and histopathology.

“Cannabidiol (CBD) has anti-inflammatory effects.

We explored its therapeutic effects on cardiac ischemia-reperfusion injury with an experimental imaging platform…

Compared to controls, CBD treatment improved systolic wall thickening, significantly increased blood flow in the AAR, significantly decreased microvascular obstruction, increased the PDR by 1.7-fold, lowered the AMI-core/AAR ratio, and increased the MSI.

These improvements were associated with reductions in serum cTnI, cardiac leukocyte infiltration, and myocellular apoptosis.

Thus, CBD therapy reduced AMI size and facilitated restoration of LV function.

We demonstrated that this experimental platform has potential theragnostic utility.”

http://www.ncbi.nlm.nih.gov/pubmed/26065843

Effects of cannabinoids and their receptors on viral infections.

“Cannabinoids, the active ingredient in marijuana, and their derivatives have received remarkable attention in the last two decades because they can affect tumor growth and metastasis.

There is a large body of evidence from in vivo and in vitro models showing that cannabinoids and their receptors influence the immune system, viral pathogenesis, and viral replication.

The present study reviews current insights into the role of cannabinoids and their receptors on viral infections.

The results reported here indicate that cannabinoids and their receptors have different sequels for viral infection.

Although activation or inhibition of cannabinoid receptors in the majority of viral infections are proper targets for development of safe and effective treatments, caution is required before using pharmaceutical cannabinoids as a treatment agent for patients with viral infections.”

Inhibition of human neutrophil chemotaxis by endogenous cannabinoids and phytocannabinoids: evidence for a site distinct from CB1 and CB2.

“Here, we show a novel pharmacology for inhibition of human neutrophil migration by endocannabinoids, phytocannabinoids, and related compounds.

This study reveals that certain endogenous lipids, phytocannabinoids, and related ligands are potent inhibitors of human neutrophil migration, and it implicates a novel pharmacological target distinct from cannabinoid CB(1) and CB(2) receptors; this target is antagonized by the endogenous compound N-arachidonoyl l-serine.

Furthermore, our findings have implications for the potential pharmacological manipulation of elements of the endocannabinoid system for the treatment of various inflammatory conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/17965195

Very low doses of delta 8-THC increase food consumption and alter neurotransmitter levels following weight loss.

“We have investigated the effect of 0.001 mg/kg delta(8)-tetrahydrocannabinol (THC) on food consumption, cognitive function, and neurotransmitters in mice…

Cognitive function showed a tendency to improve in the THC-treated mice…

Delta(8)-THC increased food intake significantly more than did delta(9)-THC, while performance and activity were similar.

Thus, delta(8)-THC (0.001 mg/kg) caused increased food consumption and tendency to improve cognitive function, without cannabimimetic side effects.

Hence, a low dose of THC might be a potential therapeutic agent in the treatment of weight disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/15099912

A Cannabinoid CB1 Receptor Positive Allosteric Modulator Reduces Neuropathic Pain in the Mouse with no Psychoactive Effects.

“The CB1 receptor represents a promising target for the treatment of several disorders including pain-related disease states.

However, therapeutic applications of Δ9-tetrahydrocannabinol (THC) and other CB1 orthosteric receptor agonists remain limited because of psychoactive side effects. Positive allosteric modulators (PAMs) offer an alternative approach to enhance CB1 receptor function for therapeutic gain with the promise of reduced side effects…

These data suggest that ZCZ011 acts as a CB1 PAM and provide the first proof of principle that CB1 PAMs offer a promising strategy to treat neuropathic and inflammatory pain with minimal or no cannabimimetic side effects.”

http://www.ncbi.nlm.nih.gov/pubmed/26052038

Targeting cannabinoid receptors as a novel approach in the treatment of graft-versus-host disease: evidence from an experimental murine model.

An external file that holds a picture, illustration, etc.
Object name is zpt0091195260001.jpg

“Allogeneic hematopoietic cell transplantation (HCT) is widely used to treat patients with life-threatening malignant and nonmalignant hematological diseases. However, allogeneic HCT often is accompanied by severe and lethal complications from graft-versus-host disease (GVHD)…

Cannabinoids, the active ingredients found in Cannabis sativa, have been shown to exhibit a wide range of pharmacological properties. Studies from our laboratory and elsewhere have suggested that cannabinoids exhibit potent anti-inflammatory properties and therefore can be used to treat autoimmune and inflammatory diseases.

Cannabinoids have been shown to inhibit tumor cell growth and angiogenesis, suggesting their potential use in the treatment of gliomas, prostate and breast cancers, and malignancies of immune origin.

Δ9-Tetrahydrocannabinol (THC) is one of the most extensively investigated ingredients found in cannabis. THC activates both CB1 and CB2, thereby mediating both psychotropic and anti-inflammatory properties.

Inasmuch as our previous studies suggested that THC exhibits anti-inflammatory and immunosuppressive properties, we tested the possibility of its use in treating GVHD in a parent → F1 model. We hereby demonstrate for the first time that administration of THC during allogeneic transplantation can significantly suppress GVHD…

Our results demonstrate for the first time that targeting cannabinoid receptors may constitute a novel treatment modality against acute GVHD.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3164345/

Δ9-Tetrahydrocannabinol attenuates allogeneic host-versus-graft response and delays skin graft rejection through activation of cannabinoid receptor 1 and induction of myeloid-derived suppressor cells.

“Immune cells have been shown to express cannabinoid receptors and to produce endogenous ligands. Moreover, activation of cannabinoid receptors on immune cells has been shown to trigger potent immunosuppression.

Despite such studies, the role of cannabinoids in transplantation, specifically to prevent allograft rejection, has not, to our knowledge, been investigated previously. In the current study, we tested the effect of THC on the suppression of HvGD as well as rejection of skin allografts…

Together, our research shows, for the first time to our knowledge, that targeting cannabinoid receptors may provide a novel treatment modality to attenuate HvGD and prevent allograft rejection.”

http://www.ncbi.nlm.nih.gov/pubmed/26034207

Cannabinoid receptor CB1 regulates STAT3 activity and its expression dictates the responsiveness to SR141716 treatment in human glioma patients’ cells.

“Herein we show that a majority of human brain tumor samples and cell lines over-expressed cannabinoid receptor CB1 as compared to normal human astrocytes (NHA), while uniformly expressed low levels of CB2. This finding prompted us to investigate the therapeutic exploitation of CB1 inactivation by SR141716 treatment, with regard to its direct and indirect cell-mediated effects against gliomas…

These results indicate that CB1 and STAT3 participate in a new oncogenic network in the complex biology of glioma and their expression levels in patients dictate the efficacy of the CB1 antagonist SR141716 in multimodal glioma destruction.

CB1 is implicated in the regulation of cellular processes linked to survival, proliferation, invasion and angiogenesis in several physio-pathological conditions. We shed light on previously unrecognized molecular mechanism of CB1-mediated modulation of human glioma progression and provide the first and original demonstration of CB1-STAT3 axis as a new target and predictor biomarkers of the benefit from specific therapies.

Indeed CB1 antagonism capable of tumoral cell division’ control while making the glioma immunovisible and engaging the immune system to fight it may represent a hopeful alternative to other established chemotherapeutics.

Because different aspects of glioma biology have been separately targeted with very limited success, we speculate that CB1 inhibitors which enclose in the same molecule cytotoxic potential and high activity to boost competent immune surveillance mechanisms, at a degree that seems to be correlated to the levels of CB1 immunoreactivity, might have profound implications for exploring new therapeutic anti-glioma actions.”

http://www.ncbi.nlm.nih.gov/pubmed/26008966

http://www.thctotalhealthcare.com/category/gllomas/

The endocannabinoid system misfires in ADHD mice (Commentary on Castelli et al.)

European Journal of Neuroscience

“Attention-deficit hyperactivity disorder (ADHD) is characterized by short attention span, hyperactivity and impulsiveness and affects both children and adults. Its social and economic significance can hardly be overrated, with a recent literature review estimating a worldwide prevalence of more than 5% (Polanczyk et al., 2007). With importance comes controversy, and the biological basis of ADHD, its diagnostic criteria and its treatments continue to divide opinions.

Neuroscientists have tackled ADHD at several levels. Brain imaging has revealed abnormalities in ADHD patients, particularly in the neural networks linking the frontal cortex to the basal ganglia (Cubillo et al., 2011). The genetic factors underlying ADHD are also being unravelled. Several lines of research point to an involvement of the dopaminergic system, and the dopamine transporter (DAT) in particular. DAT polymorphism is correlated with ADHD (Gizer et al., 2009). Intriguingly, abnormalities of the DAT and its pharmacology may explain the apparent paradox that stimulants such as amphetamine and methylphenidate (Ritalin), which inhibit DAT activity and increase extracellular dopamine, are effective (and widespread) treatments for ADHD symptoms.

Given these findings, the use of animal models of ADHD carrying mutations in the DAT gene holds great promise. In a study published in this issue of EJNCastelli et al. (2011) used a knock-in transgenic mouse in which a mutant version of the DAT gene results in a protein that becomes insensitive to cocaine, while retaining at least in part its functionality (Chen et al., 2006). These DAT mutant mice are hyperactive and respond paradoxically to both cocaine and methylphenidate: these drugs, which induce hyperlocomotor states in normal mice, reduce motor activity in the DAT mutants (Tilley & Gu, 2008).

Castelli et al. (2011) focused on the endocannabinoid system in the striatum of these DAT mutant mice. There are good reasons to investigate in this direction. Dopamine promotes endocannabinoid release in the striatum (Yin & Lovinger, 2006) and striatal dopamine levels are elevated in DAT mutant mice.

In normal animals, striatal projection neurons release endocannabinoids in response to ionotropic and metabotropic receptor activation. Endocannabinoids then act as retrograde messengers, diffusing in the extracellular space and binding presynaptic CB1 receptors located on glutamatergic and GABAergic terminals. In both cases, this decreases neurotransmitter release.

Castelli et al. (2011) found that endocannabinoid signalling is dramatically impaired in DAT mutant mice. Surprisingly, the mice present a specific deficit of the endocannabinoid-mediated control of GABA release, while control of glutamate is unaffected. The potential implications of these findings are fascinating: the striatum, whose intrinsic circuits are mostly GABAergic, is involved in the action selection process (Kimchi & Laubach, 2009). Thus, the inability of striatal projection neurons to suppress inhibition may be directly linked to abnormal action selection – a cardinal feature of ADHD.

This is one of several changes induced by the mutated DAT gene in the striatal network, including those of dopamine signalling previously described by the same group (Napolitano et al., 2010). However, this is the first indication that the endocannabinoid-mediated control of synaptic inhibition may be selectively impaired in ADHD, and raises the possibility that drugs able to restore this process may prove effective in its treatment.”

http://onlinelibrary.wiley.com/doi/10.1111/j.1460-9568.2011.07917.x/full