Cannabinoids as pharmacotherapies for neuropathic pain: from the bench to the bedside.

“Neuropathic pain is a debilitating form of chronic pain resulting from nerve injury, disease states, or toxic insults. Neuropathic pain is often refractory to conventional pharmacotherapies, necessitating validation of novel analgesics. Cannabinoids, drugs that share the same target as Delta(9)-tetrahydrocannabinol (Delta(9)-THC), the psychoactive ingredient in cannabis, have the potential to address this unmet need…

In humans, effects of smoked marijuana, synthetic Delta(9)-THC analogs (e.g., Marinol, Cesamet) and medicinal cannabis preparations containing both Delta(9)-THC and cannabidiol (e.g., Sativex, Cannador) in neuropathic pain states are reviewed. Clinical studies largely affirm that neuropathic pain patients derive benefits from cannabinoid treatment…

Evidence for the use of Cannabis sativa as a treatment for pain can be traced back to the beginnings of recorded history…

 http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755639/

Study: Smoking Pot May Ease Chronic Pain

By Amanda Gardner
smoking pot chronic pain 200x150 Study: Smoking Pot May Ease Chronic Pain

 “People with chronic pain who aren’t getting enough relief from medications may be able to ease their pain by smoking small amounts of marijuana, a new study suggests.

Marijuana also helps pain patients fall asleep more easily and sleep more soundly, according to the report, one of the first real-world studies to look at the medicinal use of smoked marijuana. Most previous research has used extracts of tetrahydrocannabinol (THC), the active ingredient in the cannabis plant.

“This is the first time anyone has done a trial of smoked cannabis on an outpatient basis,” says the lead researcher, Mark Ware, MBBS, the director of clinical research at McGill University’s Alan Edwards Centre for Research on Pain, in Montreal.

The study included 21 adults with nervous-system (neuropathic) pain stemming from surgery, accidents, or other trauma. Fourteen of the participants were on short-term disability or permanently disabled. All of them had tried marijuana before, but none were current or habitual smokers.

“They were not experienced marijuana users,” Ware says. “They came because they had severe pain that was not responding to any conventional treatment.”

Each patient in the study smoked four different strengths of marijuana over a period of 56 days. The THC potency ranged from 9.4%—the strongest dose the researchers could obtain legally—to 0%, a “placebo” pot that looked and tasted like the real thing but was stripped of THC. (By comparison, the
strongest marijuana available on the street has a THC potency of about 15%, Ware estimates.)

The participants—who weren’t told which strength they were getting—were instructed to smoke a thimbleful (25 milligrams) from a small pipe three times a day for five days. After a nine-day break, they switched to a different potency.

The highest dose of THC yielded the best results. It lessened pain and improved sleep more effectively than the placebo and the two medium-strength doses (which produced no measurable relief), and it also reduced anxiety and depression. The effects lasted for about 90 minutes to two hours, according to the study.”

Read more: http://news.health.com/2010/08/30/marijuana-chronic-pain/

Cannabis spray found to help relieve cancer pain

“Cancer patients who used a cannabis mouthspray had their level of pain reduced by 30%, a study has shown.

The cannabis-based spray, like a mouth freshener, was used on 177 patients by researchers from Edinburgh University.

They found it reduced pain levels by 30% in a group of cancer patients, all in the Edinburgh area, who had not been helped by morphine or other medicines.

The spray was developed so that it did not affect the mental state of patients in the way that using cannabis would.

Site of pain

They said the spray worked by activating molecules in the body called cannabinoid receptors which can stop nerve signals being sent to the brain from the site of pain.

Professor Marie Fallon, of the Edinburgh Cancer Research Centre at Edinburgh University, said: “These early results are very promising and demonstrate that cannabis-based medicines may deliver effective treatment for people with severe pain.

“Prescription of these drugs can be very useful in combating debilitating pain, but it is important to understand the difference between their medical and recreational use.””

http://www.plymouthwired.co.uk/news.php/2777-Cannabis-spray-found-to-help-relieve-cancer-pain

Cannabis spray blunts pain

 Erica Klarreich

“Early trials suggest cannabis spritz may give relief to chronic pain sufferers.”

Cannabis: 5,000 years of medicinal use.Cannabis: 5,000 years of medicinal use.© Photodisc

“A spray that delivers the active ingredient of cannabis under the tongue may ease chronic pain, preliminary clinical trials suggest.

Of the 23 patients who participated in the controlled study, only a few failed to respond to the spray, William Nortcutt of James Paget Hospital in Gorleston, UK told the British Association for the Advancement of Science’s Annual Festival of Science on Monday. Seventeen have gone on to use the drug to treat their pain in the long term, he said.

“Some of the patients said it made a huge difference; others just said it lets them sleep,” Nortcutt said. “But when you’re in chronic pain, being able to sleep is one of the most important things.”

Earlier clinical trials have also shown the pain-relieving benefits of cannabis. But researchers have struggled to find a good way to deliver the drug, says Roger Pertwee, a neuropharmacologist and cannabis expert at the University of Aberdeen, UK.

“The study with a spray is very interesting,” he says. “The past clinical trials have been with pills, but absorption by swallowing is very unreliable.”

About half of the trial’s participants had multiple sclerosis; the rest suffered chronic pain from severe nerve damage and spinal-cord injuries. Although a few of the multiple sclerosis patients had been using cannabis to treat pain before the trials, most participants had seldom or never used it.

The most common side-effect appeared to be dry mouth, Nortcutt reports. Several patients experienced panic or a high during tests to find appropriate dosages. Most preferred a drug in which the active substance, tetrahydrocannabinol (THC), was mixed with another, less psychoactive ingredient of cannabis. Previous clinical studies have involved only pure THC, Pertwee says.

The research comes as many groups are pushing for cannabis to be legalized for therapeutic use in the United Kingdom. If cannabis were to be made legal, Nortcutt says, the path to approval might be much faster than for typical drugs, which take an average of six years.

“There is a huge amount of anecdotal evidence that would help scientists,” Nortcutt told the Glasgow meeting. “We have to recognize that cannabis has been used for 5,000 years.” But much more work is needed to understand how cannabis might be exploited as a pain treatment, Nortcutt warned. “I wouldn’t call for it to be prescribed now.””

http://www.nature.com/news/1998/010906/full/news010906-7.html

 

For many patients, cannabis may offer the best medicinal pain relief yet discovered

by: Raw Michelle

“(NaturalNews) By the beginning of the 1980s, after a four decade long lockdown, a re-interest in cannabis arose in the scientific community. In 1982, the American Institute of Medicinepublished an intriguing report entitled “Marijuana and Health”. The report was a collection of tentative exploratory research and case studies of the use of cannabis as a medicine.

The reappearance of a powerful plant in human pharmacopeia

The studies provided a glimpse of something that intrigued health care researchers. While the plant’s effects were entirely congruent with the goal of healing, the methodology used by the plant’s chemicals was very different from those employed by typical pharmaceuticals. To developers, cannabis suddenly represented a precedent for a whole new type of medicine. With over 88 pharmacologically active substances, cannabis introduced hundreds of new compounds to the medical world. The institute’s report concluded that further research into cannabis’ potential would be of great value to the field.

However, further research was very limited, stifled by cannabis’ legal status and social stigma. The legal status forces researchers to expend an overwhelming amount of time and effort to get permission to conduct the studies. The social stigma causes institutes to be less likely to receive funding for the projects, and that researchers are sacrificing their reputation in the professional world. That also means most of the studies conducted are federally funded. Unfortunately, in addition, successful researchers will still have to face a further publication bias, as journals also risk their reputations and status when publishing cannabis related research. It is ironic that even within a scientific community, researchers are punished for being unbiased. As a result, outlets that focus solely on cannabis related research have arisen. Internet publications have opened a wide market for research that would have previously been buried.

Where opiates don’t quite cut it

Of the studies that have been conducted, most have focused on marijuana as a treatment for neuropathic pain, one of the earliest treatments for which physicians saw potential. Neuropathic pain results from nerve damage in which the cells experience difficulty communicating. This can happen from traumas like surgery, where nerve connections are severed, but continue trying to communicate news of the damage to the next cell over. Similarly, when new nerve cells are formed but not yet hooked into the neural highway, they sputter and spark, trying to achieve connection. The sensation can be very painful. Neuropathic pain is very common symptom of cancer. Tumour growth can crush nerve trunks as it bullies its way to more territory.

Sometimes just talking about it helps

Early studies demonstrate that cannabis is hugely effective in treating neuropathic pain. The cannabinoids allow nerve cells to reverse the communication path. Cells sending trauma notifications to the main trunk would normally continue doing so until the stimuli was resolved. From a practical standpoint, it is difficult to eliminate pain the moment it is recognised, but from a human level, once the person is cognizant of the problem, there is no benefit to remaining in pain. Cannabis simply tells the alarmed cell that authorities have been notified and that the problem will be resolved shortly. It doesn’t, as is popularly believed, relieve pain by making cells “stoned” or unfocused so as to disrupt communication.

The few studies have been conducted have returned agreeing with the American Medical Institute’s findings and recommendations. After only preliminary examination, cannabis presents itself as a powerful tool. More in-depth research is likely to further displace today’s most relied-upon pharmaceuticals.”

 
 
 

Central and peripheral sites of action for CB₂ receptor mediated analgesic activity in chronic inflammatory and neuropathic pain models in rats.

“Although the analgesic properties of non-selective cannabinoid receptor agonists have been known for many years, there is now an increasing body of evidence to support the potential utility of selective cannabinoid CB2 receptor agonists for the treatment of pain…

Cannabinoid CB2 receptor activation by selective agonists has been shown to produce analgesic effects in preclinical models of inflammatory and neuropathic pain. However, mechanisms underlying CB2-mediated analgesic effects remain largely unknown. The present study was conducted to elucidate the CB2 receptor expression in ‘pain relevant’ tissues and the potential sites of action of CB2 agonism in rats.

CONCLUSIONS AND IMPLICATIONS

These results demonstrate that both DRG and spinal cord are important sites contributing to CB2 receptor-mediated analgesia and that the changes in CB2 receptor expression play a crucial role for the sites of action in regulating pain perception.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3031063/

[The pharmacology of cannabinoid derivatives: are there applications to treatment of pain?].

“OBJECTIVE:

To present the cannabinoid system together with recent findings on the pharmacology of these compounds in the treatment of pain.

DATA SOURCES:

Search through Medline database of articles published in French and English since 1966. Also use of other publications such as books on cannabis.

DATA SYNTHESIS:

Recent advances have dramatically increased our understanding of cannabinoid pharmacology. The psychoactive constituents of Cannabis sativa have been isolated, synthetic cannabinoids described and an endocannabinoid system identified, together with its component receptors and ligands. Strong laboratory evidence now underwrites anecdotal claims of cannabinoid analgesia in inflammatory and neuropathic pain. Sites of analgesic action have been identified in brain, spinal cord and the periphery, with the latter two presenting attractive targets for divorcing the analgesic and psychotrophic effects of cannabinoids. Clinical trials are now required, but are hindered by a paucity of cannabinoids of suitable bioavailability and therapeutic ratio.

CONCLUSION:

The cannabinoid system is a major target in the treatment of pain and its therapeutic potential should be assessed in the near future by the performance of new clinical trials.”

http://www.ncbi.nlm.nih.gov/pubmed/12134594

Cannabinoid analgesia as a potential new therapeutic option in the treatment of chronic pain.

Abstract

“OBJECTIVE:

To review the literature concerning the physiology of the endocannabinoid system, current drug development of cannabinoid agonists, and current clinical research on the use of cannabinoid agonists for analgesia.

DATA SOURCES:

Articles were identified through a search of MEDLINE (1966-August 2005) using the key words cannabis, cannabinoid, cannabi*, cannabidiol, nabilone, THC, pain, and analgesia. No search limits were included. Additional references were located through review of the bibliographies of the articles identified.

STUDY SELECTION AND DATA EXTRACTION:

Studies of cannabinoid agonists for treatment of pain were selected and were not limited by pain type or etiology. Studies or reviews using animal models of pain were also included. Articles that related to the physiology and pharmacology of the endocannabinoid system were evaluated.

DATA SYNTHESIS:

The discovery of cannabinoid receptors and endogenous ligands for these receptors has led to increased drug development of cannabinoid agonists. New cannabimimetic agents have been associated with fewer systemic adverse effects than delta-9-tetrahydrocannabinol, including recent development of cannabis medicinal extracts for sublingual use (approved in Canada), and have had promising results for analgesia in initial human trials. Several synthetic cannabinoids have also been studied in humans, including 2 cannabinoid agonists available on the international market.

CONCLUSIONS:

Cannabinoids provide a potential approach to pain management with a novel therapeutic target and mechanism. Chronic pain often requires a polypharmaceutical approach to management, and cannabinoids are a potential addition to the arsenal of treatment options.”

http://www.ncbi.nlm.nih.gov/pubmed/16449552

Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain.

Abstract

“Cannabinoids suppress behavioural responses to noxious stimulation and suppress nociceptive transmission through activation of CB1 and CB2 receptor subtypes. CB1 receptors are expressed at high levels in the central nervous system (CNS), whereas CB2 receptors are found predominantly, but not exclusively, outside the CNS. CB2 receptors are also upregulated in the CNS and dorsal root ganglia by pathological pain states. Here, we review behavioural, neurochemical and electrophysiological data, which identify cannabinoid CB2 receptors as a therapeutic target for treating pathological pain states with limited centrally, mediated side effects. The development of CB2-selective agonists (with minimal affinity for CB1) as well as mutant mice lacking CB2 receptors has provided pharmacological and genetic tools required to evaluate the effectiveness of CB2 agonists in suppressing persistent pain states. This review will examine the efficacy of cannabinoid CB2-selective agonists in suppressing acute, inflammatory and neuropathic nociception following systemic and local routes of administration. Data derived from behavioural, neurochemical and neurophysiological approaches are discussed to better understand the relationship between antinociceptive effects induced by CB2-selective agonists in behavioural studies and neural mechanisms of pain suppression. Finally, the therapeutic potential and possible limitations of CB2-based pharmacotherapies for pathological pain states induced by tissue and nerve injury are discussed.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219541/

Selective activation of cannabinoid CB2 receptors suppresses neuropathic nociception induced by treatment with the chemotherapeutic agent paclitaxel in rats.

“Activation of cannabinoid CB(2) receptors suppresses neuropathic pain induced by traumatic nerve injury. The present studies were conducted to evaluate the efficacy of cannabinoid CB(2) receptor activation in suppressing painful peripheral neuropathy evoked by chemotherapeutic treatment with the antitumor agent paclitaxel…

 Our data suggest that cannabinoid CB(2) receptors may be important therapeutic targets for the treatment of chemotherapy-evoked neuropathy.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2682949/