Safety and Pharmacokinetics of Oral Cannabidiol When Administered Concomitantly With Intravenous Fentanyl in Humans.

“Objectives: Cannabidiol (CBD) is hypothesized as a potential treatment for opioid addiction, with safety studies an important first step for medication development. We determined CBD safety and pharmacokinetics when administered concomitantly with a high-potency opioid in healthy subjects.

Conclusions: Cannabidiol does not exacerbate adverse effects associated with intravenous fentanyl administration. Coadministration of CBD and opioids was safe and well tolerated. These data provide the foundation for future studies examining CBD as a potential treatment for opioid abuse.”

http://journals.lww.com/journaladdictionmedicine/Abstract/publishahead/Safety_and_Pharmacokinetics_of_Oral_Cannabidiol.99700.aspx

Individual differences and vulnerability to drug addiction: a focus on the endocannabinoid system.

“Vulnerability to drug addiction depends upon the interactions between the biological make-up of the individual, the environment, and age. These interactions are complex and difficult to tease apart.

Since dopamine is involved in the rewarding effects of drugs of abuse, it is postulated that innate differences in mesocorticolimbic pathway can influence the response to drug exposure.

In particular, higher and lower expression of dopamine D2 receptors in the ventral striatum (i.e. a marker of dopamine function) have been considered a putative protective and risk factor, respectively, that can influence one’s susceptibility to continued drug abuse as well as the transition to addiction.

This phenomenon, which is phylogenetically preserved, appears to be a compensatory change to increased impulse activity of midbrain dopamine neurons.

Hence, dopamine neuronal excitability plays a fundamental role in the diverse stages of the drug addiction cycle.

In this review, a framework for the evidence that modulation of dopamine neuronal activity plays in the context of vulnerability to drug addiction will be presented.

Furthermore, since endogenous cannabinoids serve as retrograde messengers to shape afferent neuronal activity in a short- and long-lasting fashion, their role in individual differences and vulnerability to drug addiction will be discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/25714966

http://www.thctotalhealthcare.com/category/addiction/

Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies.

“The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides (enkephalins, endorphins, and dynorphins).

The endogenous cannabinoid system comprises lipid neuromodulators (endocannabinoids), enzymes for their synthesis and their degradation and two well-characterized receptors, cannabinoid receptors CB1 and CB2.

These systems play a major role in the control of pain as well as in mood regulation, reward processing and the development of addiction.

Both opioid and cannabinoid receptors are coupled to G proteins and are expressed throughout the brain reinforcement circuitry.

A better understanding of opioid-cannabinoid interactions may provide novel strategies for therapies in addicted individuals.”

http://www.ncbi.nlm.nih.gov/pubmed/25698968

Cannabinoid CB2 receptors protect against alcoholic liver disease by regulating Kupffer cell polarization in mice.

“Activation of Kupffer cells plays a central role in the pathogenesis of alcoholic liver disease.

Because cannabinoid CB2 receptors (CB2) display potent anti-inflammatory properties, we investigated their role in the pathogenesis of alcoholic liver disease, focusing on the impact of CB2 on Kupffer cell polarization and the consequences on liver steatosis.

Altogether, these findings demonstrate that CB2 receptors display beneficial effects on alcohol-induced inflammation by regulating M1/M2 balance in Kupffer cells, thereby reducing hepatocyte steatosis via paracrine interactions between Kupffer cells and hepatocytes.

These data identify CB2 agonists as potential therapeutic agents for the management of alcoholic liver disease.”

http://www.ncbi.nlm.nih.gov/pubmed/21735467

http://www.thctotalhealthcare.com/category/liver-disease/

Effects of the novel cannabinoid CB1 receptor antagonist PF 514273 on the acquisition and expression of ethanol conditioned place preference.

“The centrally expressed cannabinoid receptor (CB1) has been considered a potential therapeutic target in treating alcoholism.

Though CB1 receptors have been shown to modulate primary and conditioned ethanol reward, much of this research employed animal models that require ethanol ingestion or oral routes of administration. This is problematic considering CB1 antagonist drugs have high anorectic liability and have been used clinically in the treatment of obesity. Therefore, the present study examined CB1 antagonism in DBA/2J mice using an unbiased ethanol-induced conditioned place preference (CPP) procedure, a paradigm that does not require ethanol ingestion…

Results from the present study appear inconsistent with other studies that have demonstrated a role for CB1 antagonism in ethanol reward using oral administration paradigms.

Our findings suggest that CB1 antagonism may have greater involvement in consummatory behavior than ethanol reward.”

http://www.ncbi.nlm.nih.gov/pubmed/24954022

http://www.thctotalhealthcare.com/category/addiction/

Medical Marijuana Helps Cure Chronic Disease

Medical Marijuana Helps Cure Chronic Disease

“The medicinal power of Marijuana is well documented throughtout history

Back in 2700 BC, According to Chinese lore, the Emperor Shen Nung, considered the Father of Chinese medicine, in 2700 BC ,discovered the healing properties of Marijuana as well as Ginseng and Ephedra.

Throughout recorded history, the use of Medical Marijuana  has been linked to the ancient Egyptians, Persians, Greek civilizations, George Washington, Queen Victoria and even mainstream medicine by the 1840s.

From the 1850s to Y 1942, Marijuana was listed in the United States Pharmacopeia, an official public standards-setting authority for all prescription and over-the counter medicines, as a treatment for tetanus, cholera, rabies, dysentery, alcoholism, opiate addiction, convulsive disorders, insanity, excessive menstrual bleeding and many other health problems. My father was a Dental doctor and had a license to dispense the drug, pharmacies carried it back then.

During that same time frame prohibition gained popularity, that along with a growing “faith” in federal government.

By Y 1937, the United States passed its 1st federal law against Marijuana despite objections by the American Medical Association (AMA).

In fact, Dr. William C. Woodward, testifying on behalf of the AMA, told the US Congress:

“The American Medical Association knows of no evidence that Marijuana is a dangerous drug.”

He warned that a prohibition “loses sight of the fact that future investigation may show that there are substantial medical uses for Cannabis.”

Today, we see a growing trend of acceptance of Marijuana for its medicinal purposes.

Dr. Sanjay Gupta, CNN’s chief medical correspondent, reversed his Y 2009 opinion against Marijuana when he said, “We have been terribly and systematically misled for nearly 70 yrs in the United States, and I apologize for my own role in that.”

Now people including lawmakers are seeing the legalization of Marijuana in states like Colorado and Washington for “recreational” purposes. Most Americans are in favor of Medical Marijuana,  and the legalization of this drug.

The Big Q: why does the federal government want to ban its usage?

The Big A: it is all about control and money, and there is a major market for it, plus it poses a major threat to the pharmaceutical industry.

Below are just a few of the many health benefits associated with Medical Marijuana:

1. It can stop HIV from spreading throughout the body.
2. It slows the progression of Alzheimer’s.
3. It slows the spread of cancer cells.
4. It is an active pain reliever.
5. It can prevent or help with opiate addiction.
6. It combats depression, anxiety and ADHD.
7. It can treat epilepsy and Tourette’s.
8. It can help with other neurological damage, such as concussions and strokes.
9. It can prevent blindness from glaucoma.
10. Its connected to lower insulin levels in diabetics.

Contrary to popular notions, many patients  experience health benefits from Medical Marijuana without “getting stoned.””

http://www.livetradingnews.com/medical-marijuana-helps-cure-chronic-disease-55569.htm#.U6VjgZRX-uY

Δ9-tetrahydrocannabinol prevents methamphetamine-induced neurotoxicity.

“Methamphetamine (METH) is a potent psychostimulant with neurotoxic properties…

Preclinical studies have shown that natural (Δ9-tetrahydrocannabinol, Δ9-THC) and synthetic cannabinoid CB1 and CB2 receptor agonists exert neuroprotective effects on different models of cerebral damage. Here, we investigated the neuroprotective effect of Δ9-THC on METH-induced neurotoxicity…

Our results indicate that Δ9-THC reduces METH-induced brain damage via inhibition of nNOS expression and astrocyte activation through CB1-dependent and independent mechanisms, respectively.”

http://www.ncbi.nlm.nih.gov/pubmed/24844285

Full-text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4028295/

Relationship between working-memory network function and substance use: a 3-year longitudinal fMRI study in heavy cannabis users and controls.

“The aim of this 3-year longitudinal neuro-imaging study was to investigate the relationship between substance use (e.g. alcohol, cannabis, nicotine, illegal psychotropic drugs) and working-memory network function over time in heavy cannabis users and controls.

Within the group of cannabis users, cannabis-related problems remained stable, whereas alcohol-related problems, nicotine dependence and illegal psychotropic substance use increased over time. At both measurements, behavioral performance and network functionality during the n-back task did not differ between heavy cannabis users and controls. Although n-back accuracy improved, working-memory network function remained stable over time.

Within the group of cannabis users, working-memory network functionality was not associated with substance use.

These results suggest that sustained moderate to heavy levels of cannabis, nicotine, alcohol and illegal psychotropic substance use do not change working-memory network functionality.

Moreover, baseline network functionality did not predict cannabis use and related problems three years later, warranting longitudinal studies in more chronic or dependent cannabis users.”

http://www.ncbi.nlm.nih.gov/pubmed/24589297

Changes in Cerebral CB1 Receptor Availability after Acute and Chronic Alcohol Abuse and Monitored Abstinence.

“Involvement of the type 1 cannabinoid receptor (CB1R) in the effects of alcohol on the brain is supported by animal experiments…

In conclusion, whereas the acute alcohol effect is an increase in CB1R availability, chronic heavy drinking leads to reduced CB1R availability that is not reversible after 1 month of abstinence. Longer follow-up is required to differentiate whether this is a compensatory effect of repeated endocannabinoid overstimulation or an enduring trait-like feature.

An enhanced CB1R signaling may offer a new therapeutic direction for treatment of the negative affective state produced by alcohol withdrawal and abstinence, which is critical for the maintenance of alcohol addiction.”

http://www.ncbi.nlm.nih.gov/pubmed/24553924

Basolateral amygdala CB1 cannabinoid receptors mediate nicotine-induced place preference.

“In the present study, the effects of bilateral microinjections of cannabinoid CB1 receptor agonist and antagonist into the basolateral amygdala (intra-BLA) on nicotine-induced place preference were examined in rats.

Taken together, these findings support the possible role of endogenous cannabinoid system of the BLA in the acquisition and the expression of nicotine-induced place preference. Furthermore, it seems that there is a functional interaction between the BLA cannabinoid receptors and nicotine in producing the rewarding effects.”

http://www.ncbi.nlm.nih.gov/pubmed/24468643