Cannabinoid receptor systems: therapeutic targets for tumour intervention

Abstract

“The past decade has witnessed a rapid expansion of our understanding of the biological roles of cannabinoids and their cognate receptors. It is now certain that Delta9-tetrahydrocannabinol, the principle psychoactive component of the Cannabis sativa plant, binds and activates membrane receptors of the 7-transmembrane domain, G-protein-coupled superfamily. Several putative endocannabinoids have since been identified, including anandamide, 2-arachidonyl glycerol and noladin ether. Synthesis of numerous cannabinomimetics has also greatly expanded the repertoire of cannabinoid receptor ligands with the pharmacodynamic properties of agonists, antagonists and inverse agonists. Collectively, these ligands have proven to be powerful tools both for the molecular characterisation of cannabinoid receptors and the delineation of their intrinsic signalling pathways. Much of our understanding of the signalling mechanisms activated by cannabinoids is derived from studies of receptors expressed by tumour cells; hence, this review provides a succinct summary of the molecular pharmacology of cannabinoid receptors and their roles in tumour cell biology. Moreover, there is now a genuine expectation that the manipulation of cannabinoid receptor systems may have therapeutic potential for a diverse range of human diseases. Thus, this review also summarises the demonstrated antitumour actions of cannabinoids and indicates possible avenues for the future development of cannabinoids as antitumour agents.”

http://www.ncbi.nlm.nih.gov/pubmed/14640910

Changes in the Endocannabinoid System May Give Insight into new and Effective Treatments for Cancer

Logo of nihpa

“The endocannabinoid system comprises specific cannabinoid receptors such as Cb1 and Cb2, the endogenous ligands (anandamide and 2-arachidonyl glycerol among others) and the proteins responsible for their synthesis and degradation. This system has become the focus of research in recent years because of its potential therapeutic value several disease states. The following review describes our current knowledge of the changes that occur in the endocannabinoid system during carcinogenesis and then focuses on the effects of anandamide on various aspects of the carcinogenic process such as growth, migration, and angiogenesis in tumors from various origins.

Marijuana and its derivatives have been used in medicine for centuries, however, it was not until the isolation of the psychoactive component of Cannabis sativa (Δ9-tetrahydrocannabinol; Δ9-THC) and the subsequent discovery of the endogenous cannabinoid signaling system that research into the therapeutic value of this system reemerged. Ongoing research is determining that regulation of the endocannabinoid system may be effective in the treatment of pain (Calignano et al., 1998; Manzanares et al., 1999), glaucoma (Voth and Schwartz, 1997), and neurodegenerative disorders such as Parkinson’s disease (Piomelli et al., 2000) and multiple sclerosis (Baker et al., 2000). In addition, cannabinoids might be effective anti-tumoral agents because of their ability to inhibit the growth of various types of cancer cell lines in culture (De Petrocellis et al., 1998; Ruiz et al., 1999; Sanchez et al., 1998, 2001) and in laboratory animals (Galve-Roperh et al., 2000).

In conclusion, the endocannabinoid system exerts a myriad of effects on tumor cell growth, progression, angiogenesis, and migration. With a notable few exceptions, targeting the endocannabinoid system with agents that activate cannabinoid receptors or increase the endogenous levels of AEA may prove to have therapeutic benefit in the treatment of various cancers. Further studies into the downstream consequences of AEA treatment are required and may illuminate other potential therapeutic targets.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2791688/

GINGER DESTROYS CANCER MORE EFFECTIVELY THAN DEATH-LINKED CANCER DRUGS

“Ginger, a cousin spice of super anti-cancer substance turmeric, is known for its ability to shrink tumors. Astoundingly, it is even more effective than many cancer drugs, which have been shown to be completely ineffective and actually accelerate the death of cancer patients. Commonly consumed across the world in small doses among food and beverage products, the medicinal properties of ginger far surpass even advanced pharmaceutical inventions.”

http://myscienceacademy.org/2012/08/10/ginger-destroys-cancer-more-effectively-than-death-linked-cancer-drugs/ 

Turned-Off Cannabinoid Receptor Turns On Colorectal Tumor Growth

“CB1 is well-established for relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. It now may serve as a new path for cancer prevention or treatment.

“We’ve found that CB1 expression is lost in most colorectal cancers, and when that happens a cancer-promoting protein is free to inhibit cell death,” said senior author Raymond DuBois, M.D., Ph.D., provost and executive vice president of The University of Texas M. D. Anderson Cancer Center.

DuBois and collaborators from Vanderbilt-Ingram Cancer Center also show that CB1 expression can be restored with an existing drug, decitabine. They found that mice prone to developing intestinal tumors that also have functioning CB1 receptors develop fewer and smaller tumors when treated with a drug that mimics a cannabinoid receptor ligand. Ligands are molecules that function by binding to specific receptors. Agonists are synthetic molecules that mimic the action of a natural molecule.

“Potential application of cannabinoids as anti-tumor drugs is an exciting prospect, because cannabinoid agonists are being evaluated now to treat the side-effects of chemotherapy and radiation therapy,” DuBois said. “Turning CB1 back on and then treating with a cannabinoid agonist could provide a new approach to colorectal cancer treatment or prevention.”

Cannabinoids are a group of ligands that serve a variety of cell-signaling roles. Some are produced by the body internally (endocannabinoids). External cannabinoids include manmade versions and those present in plants, most famously the active ingredient in marijuana (THC).”

http://www.sciencedaily.com/releases/2008/08/080801074056.htm

Could Pot Cure Colon Cancer?

“According to researchers at the University of Texas in Houston chemicals in marijuana could be a potential cure in the treatment of colon cancer. Don’t think lighting up a joint will help though, it’s all a chemical process.

 
The key receptors for cannabinoids are turned off in the human body when it’s attacked by most kinds of colon cancer. Those receptors are also found in marijuana.

 

Using test mice scientists turned off the receptor and found that tumors quickly developed.

 

“When we knocked out the receptor, the number of tumors went up dramatically,” says researcher Raymond DuBois. Alternatively, when mice with normal CB1 receptors were treated with a cannabinoid compound, their tumours shrank.

 

The researchers are advising a two step method to treat colon cancer.

 

Step One is to turn the CB1 receptor back on and then activate it with drugs that mimic marijuana. The drug decitibine is already approved and does help in making the receptor. Already the second step has not been worked out Dubuis believes that using drugs that mimic marijuana will shrunk tumors.”

 

 

Cannabis-Linked Cell Receptor Might Help Prevent Colon Cancer – ABCNews

“A cannabinoid receptor lying on the surface of cells may help suppress colorectal cancer, say U.S. researchers. When the receptor is turned off, tumor growth is switched on.

Cannabinoids are compounds related to the tetrahydrocannabinol (THC) found in the cannabis plant.

It’s already known that the receptor, CB1, plays a role in relieving pain and nausea, elevating mood and stimulating appetite by serving as a docking station for the cannabinoid group of signaling molecules. This study suggests that CB1 may offer a new path for cancer prevention or treatment.

“Potential application of cannabinoids as anti-tumor drugs is an exciting prospect, because cannabinoid agonists (synthetic molecules that mimic the action of natural molecules) are being evaluated now to treat the side effects of chemotherapy and radiation therapy,” DuBois said. “Turning CB1 back on and than treating with a cannabinoid agonist could provide a new approach to colorectal cancer treatment or prevention.””

http://abcnews.go.com/Health/Healthday/story?id=5496283&page=1

Study: Marijuana Could Stop Growth of Colon Cancer Cells

“The administration of the non-psychotropic cannabis plant constituent cannabidiol (CBD) is protective in an experimental model of colon cancer, according to preclinical trial data published online in the Journal of Molecular Medicine.

Investigators at the University of Naples assessed the effect of CBD on colon carcinogenesis in mice. Researchers reported that CBD administration was associated with cancerous tumor reduction and reduced cell proliferation.

Authors wrote: “Although cannabidiol has been shown to kill glioma cells, to inhibit cancer cell invasion and to reduce the growth of breast carcinoma and lung metastases in rodents, its effect on colon carcinogenesis has not been evaluated to date. This is an important omission, since colon cancer affects millions of individuals in Western countries. In the present study, we have shown that cannabidiol exerts (1) protective effects in an experimental model of colon cancer and (2) antiproliferative actions in colorectal carcinoma cells.”

Authors also acknowledged that CBD possesses “an extremely safe profile in humans.” They concluded, “[O]ur findings suggest that cannabidiol might be worthy of clinical consideration in colon cancer prevention.””

http://www.opposingviews.com/i/society/drug-law/latest-science-non-psychotropic-cannabinoid-inhibits-colon-cancer-cell

Cannabinoids and the digestive tract.

“In the digestive tract there is evidence for the presence of high levels of endocannabinoids (anandamide and 2-arachidonoylglycerol) and enzymes involved in the synthesis and metabolism of endocannabinoids. Immunohistochemical studies have shown the presence of CB1 receptors on myenteric and submucosal nerve plexuses along the alimentary tract. Pharmacological studies have shown that activation of CB1 receptors produces relaxation of the lower oesophageal sphincter, inhibition of gastric motility and acid secretion, as well as intestinal motility and secretion. In general, CB1-induced inhibition of intestinal motility and secretion is due to reduced acetylcholine release from enteric nerves. Conversely, endocannabinoids stimulate intestinal primary sensory neurons via the vanilloid VR1 receptor, resulting in enteritis and enhanced motility. The endogenous cannabinoid system has been found to be involved in the physiological control of colonic motility and in some pathophysiological states, including paralytic ileus, intestinal inflammation and cholera toxin-induced diarrhoea. Cannabinoids also possess antiemetic effects mediated by activation of central and peripheral CB1 receptors.

Pharmacological modulation of the endogenous cannabinoid system could provide a new therapeutic target for the treatment of a number of gastrointestinal diseases, including nausea and vomiting, gastric ulcers, secretory diarrhoea, paralytic ileus, inflammatory bowel disease, colon cancer and gastro-oesophageal reflux conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/16596788

The endogenous cannabinoid, anandamide, induces cell death in colorectal carcinoma cells: a possible role for cyclooxygenase 2

Abstract

“BACKGROUND AND AIMS:

Cyclooxygenase 2 (COX-2) is upregulated in most colorectal cancers and is responsible for metabolism of the endogenous cannabinoid, anandamide, into prostaglandin-ethanolamides (PG-EAs). The aims of this study were to determine whether anandamide and PG-EAs induce cell death in colorectal carcinoma (CRC) cells, and whether high levels of COX-2 in CRC cells could be utilised for their specific targeting for cell death by anandamide.

METHODS:

We determined the effect of anandamide on human CRC cell growth by measuring cell growth and cell death, whether this was dependent on COX-2 protein expression or enzyme activity, and the potential involvement of PG-EAs in induction of cell death.

RESULTS:

Anandamide inhibited the growth of CRC cell lines HT29 and HCA7/C29 (moderate and high COX-2 expressors, respectively) but had little effect on the very low COX-2 expressing CRC cell line, SW480. Induction of cell death in HT29 and HCA7/C29 cell lines was partially rescued by the COX-2 selective inhibitor NS398. Cell death induced by anandamide was neither apoptosis nor necrosis. Furthermore, inhibition of fatty acid amide hydrolase potentiated the non-apoptotic cell death, indicating that anandamide induced cell death was mediated via metabolism of anandamide by COX-2, rather than its degradation into arachidonic acid and ethanolamine. Interestingly, both PGE2-EA and PGD2-EA induced classical apoptosis.

CONCLUSIONS:

These findings suggest anandamide may be a useful chemopreventive/therapeutic agent for colorectal cancer as it targets cells that are high expressors of COX-2, and may also be used in the eradication of tumour cells that have become resistant to apoptosis.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1774787/

The endogenous cannabinoid, anandamide, induces COX-2-dependent cell death in apoptosis-resistant colon cancer cells.

Abstract

“Despite recent advances in understanding colorectal tumour biology, there is still a need to improve the 5-year survival rate of patients with colorectal cancer as approximately 40% of patients presenting with advanced disease will remain resistant to therapy. One of the major contributing factors in resistance to therapy is the failure of colorectal tumour cells to undergo apoptosis. Hence there is an urgent need to develop novel therapeutic approaches that can target apoptosis-resistant cells. To this end, we investigated the potential efficacy of the endogenous cannabinoid anandamide to induce cell death in apoptosis-resistant colon cancer cells. Here, for the first time, we show that anandamide can induce cell death in the apoptosis-resistant HCT116 Bax-/- colorectal cell line. Importantly, we provide direct genetic evidence that this induction of cell death is dependent on COX-2 expression. Interestingly, increased COX-2 expression also sensitised the SW480 colorectal cancer cell line (low endogenous COX-2) to anandamide-induced death, whereas COX-2 suppression by RNAi inhibited anandamide-induced cell death in the HCA7 colorectal cancer cell line (high endogenous COX-2 expression). This COX-2-dependent death was independent of cannabinoid receptor engagement (CB1 or CB2), and not a direct consequence of reactive oxygen species (ROS) formation. This study demonstrates a novel utilisation for COX-2 expression, targeting apoptotic defective colorectal cancer cells for destruction by anandamide. As COX-2 is not expressed in the normal colorectal epithelium, but highly expressed in colorectal tumours and apoptosis resistance contributes to treatment failure, these data suggest that anandamide has the potential to be an effective therapeutic in colorectal cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/20514410