Cannabidiol reduces brain damage and improves functional recovery after acute hypoxia-ischemia in newborn pigs.

Image result for Pediatr Res.

“Newborn piglets exposed to acute hypoxia-ischemia (HI) received i.v. cannabidiol (HI + CBD) or vehicle (HI + VEH). In HI + VEH, 72 h post-HI brain activity as assessed by amplitude-integrated EEG (aEEG) had only recovered to 42 ± 9% of baseline, near-infrared spectroscopy (NIRS) parameters remained lower than normal, and neurobehavioral performance was abnormal (27.8 ± 2.3 points, normal 36). In the brain, there were fewer normal and more pyknotic neurons, while astrocytes were less numerous and swollen. Cerebrospinal fluid concentration of neuronal-specific enolase (NSE) and S100β protein and brain tissue percentage of TNFα(+) cells were all higher. In contrast, in HI + CBD, aEEG had recovered to 86 ± 5%, NIRS parameters increased, and the neurobehavioral score normalized (34.3 ± 1.4 points). HI induced histological changes, and NSE and S100β concentration and TNFα(+) cell increases were suppressed by CBD. In conclusion, post-HI administration of CBD protects neurons and astrocytes, leading to histological, functional, biochemical, and neurobehavioral improvements.”

https://www.ncbi.nlm.nih.gov/pubmed/21654550

Cannabidiol administration after hypoxia-ischemia to newborn rats reduces long-term brain injury and restores neurobehavioral function.

Image result for neuropharmacology journal

“Cannabidiol (CBD) demonstrated short-term neuroprotective effects in the immature brain following hypoxia-ischemia (HI).

We examined whether CBD neuroprotection is sustained over a prolonged period.

In conclusion, CBD administration after HI injury to newborn rats led to long-lasting neuroprotection, with the overall effect of promoting greater functional rather than histological recovery.

These effects of CBD were not associated with any side effects.

These results emphasize the interest in CBD as a neuroprotective agent for neonatal HI.”

https://www.ncbi.nlm.nih.gov/pubmed/22659086

Neuroprotective Effects of Cannabidiol In Hypoxic Ischemic Insult: The Therapeutic Window In Newborn Mice.

Image result for CNS Neurol Disord Drug Targets

“A relevant therapeutic time window (TTW) is an important criterion for considering the clinical relevance of a substance preventing newborn hypoxic-ischemic (HI) brain damage.

OBJECTIVE:

to test the TTW of the neuroprotective effects of cannabidol (CBD), a non-psychoactive cannabinoid in a model of newborn HI brain damage.

RESULTS:

CBD administered up to 18 h after HI reduced IHVL and neuropathological score by 60%, TUNEL+ count by 90% and astrocyte damage by 50%. In addition, CBD blunted the HI-induced increase in microglial population. When CBD administration was delayed 24 h, however, the neuroprotective effect was lost in terms of IHVL, apoptosis or astrogliosis reduction.

CONCLUSION:

CBD shows a TTW of 18 h when administered to HI newborn mice, which represents a broader TTW than reported for other neuroprotective treatments including hypothermia.”

https://www.ncbi.nlm.nih.gov/pubmed/27686886

Targeting Cannabinoid CB2 Receptors in the Central Nervous System. Medicinal Chemistry Approaches with Focus on Neurodegenerative Disorders.

Image result for Front Neurosci.

“Endocannabinoids activate two types of specific G-protein-coupled receptors (GPCRs), namely cannabinoid CB1 and CB2. Contrary to the psychotropic actions of agonists of CB1 receptors, and serious side effects of the selective antagonists of this receptor, drugs acting on CB2 receptors appear as promising drugs to combat CNS diseases (Parkinson’s disease, Huntington’s chorea, cerebellar ataxia, amyotrohic lateral sclerosis). Differential localization of CB2 receptors in neural cell types and upregulation in neuroinflammation are keys to understand the therapeutic potential in inter alia diseases that imply progressive neurodegeneration. Medicinal chemistry approaches are now engaged to develop imaging tools to map receptors in the living human brain, to develop more efficacious agonists, and to investigate the possibility to develop allosteric modulators.”

THC (Δ9-Tetrahydrocannabinol) Exerts Neuroprotective Effect in Glutamate-affected Murine Primary Mesencephalic Cultures Through Restoring Mitochondrial Membrane Potential and Anti-apoptosis Involving CB1 Receptor-dependent Mechanism.

Phytotherapy Research

“Aging-related neurodegenerative diseases, such as Parkinson’s disease (PD) or related disorders, are an increasing societal and economic burden worldwide.

Δ9-Tetrahydrocannabinol (THC) is discussed as a neuroprotective agent in several in vitro and in vivo models of brain injury. However, the mechanisms by which THC exhibits neuroprotective properties are not completely understood.

In the present study, we investigated neuroprotective mechanisms of THC in glutamate-induced neurotoxicity in primary murine mesencephalic cultures, as a culture model for PD.

THC protected dopaminergic neurons and other cell types of primary dissociated cultures from glutamate-induced neurotoxicity.

Moreover, THC significantly counteracted the glutamate-induced mitochondrial membrane depolarization and apoptosis.

In conclusion, THC exerts anti-apoptotic and restores mitochondrial membrane potential via a mechanism dependent on CB1 receptor.

It strengthens the fact that THC has a benefit on degenerative cellular processes occurring, among others, in PD and other neurodegenerative diseases by slowing down the progression of neuronal cell death.”

https://www.ncbi.nlm.nih.gov/pubmed/27654887

http://onlinelibrary.wiley.com/wol1/doi/10.1002/ptr.5712/full

The Effect of Chronic Activation of the Novel Endocannabinoid Receptor GPR18 on Myocardial Function and Blood Pressure in Conscious Rats.

Image result for journal of cardiovascular pharmacology

“While acute activation of the novel endocannabinoid receptor GPR18 causes hypotension, there are no reports on GPR18 expression in the heart or its chronic modulation of cardiovascular function. In this study, after demonstrating GPR18 expression in the heart, we show that chronic (2 weeks) GPR18 activation with its agonist abnormal cannabidiol (abn-cbd; 100 µg/kg/day; i.p) produced hypotension, suppressed the cardiac sympathetic dominance, and improved left ventricular (LV) function (increased the contractility index dp/dtmax, and reduced LV end diastolic pressure, LVEDP) in conscious rats. Ex vivo studies revealed increased: (i) cardiac and plasma adiponectin (ADN) levels; (ii) vascular (aortic) endothelial nitric oxide synthase (eNOS) expression, (iii) vascular and serum nitric oxide (NO) levels; (iv) myocardial and plasma cyclic guanosine monophosphate (cGMP) levels; (v) phosphorylation of myocardial protein kinase B (Akt) and extracellular signal regulated kinase 1/2 (ERK1/2) along with reduced myocardial reactive oxygen species (ROS) in abn-cbd treated rats. These biochemical responses contributed to the hemodynamic responses and were GPR18-mediated because concurrent treatment with the competitive GPR18 antagonist (O-1918) abrogated the abn-cbd evoked hemodynamic and biochemical responses. The current findings present new evidence for a salutary cardiovascular role for GPR18, mediated, at least partly, via elevation in the levels of ADN.”

Endocannabinoid signaling in social functioning: an RDoC perspective.

Image result for Transl Psychiatry.

“Core deficits in social functioning are associated with various neuropsychiatric and neurodevelopmental disorders, yet biomarker identification and the development of effective pharmacological interventions has been limited.

Recent data suggest the intriguing possibility that endogenous cannabinoids, a class of lipid neuromodulators generally implicated in the regulation of neurotransmitter release, may contribute to species-typical social functioning.

Systematic study of the endogenous cannabinoid signaling could, therefore, yield novel approaches to understand the neurobiological underpinnings of atypical social functioning.

This article provides a critical review of the major components of the endogenous cannabinoid system (for example, primary receptors and effectors-Δ9-tetrahydrocannabinol, cannabidiol, anandamide and 2-arachidonoylglycerol) and the contributions of cannabinoid signaling to social functioning.

Data are evaluated in the context of Research Domain Criteria constructs (for example, anxiety, chronic stress, reward learning, motivation, declarative and working memory, affiliation and attachment, and social communication) to enable interrogation of endogenous cannabinoid signaling in social functioning across diagnostic categories.

The empirical evidence reviewed strongly supports the role for dysregulated cannabinoid signaling in the pathophysiology of social functioning deficits observed in brain disorders, such as autism spectrum disorder, schizophrenia, major depressive disorder, posttraumatic stress disorder and bipolar disorder.

Moreover, these findings indicate that the endogenous cannabinoid system holds exceptional promise as a biological marker of, and potential treatment target for, neuropsychiatric and neurodevelopmental disorders characterized by impairments in social functioning.”

https://www.ncbi.nlm.nih.gov/pubmed/27676446

Cannabidiol, among Other Cannabinoid Drugs, Modulates Prepulse Inhibition of Startle in the SHR Animal Model: Implications for Schizophrenia Pharmacotherapy.

Image result for Front Pharmacol

“Schizophrenia is a severe psychiatric disorder that involves positive, negative and cognitive symptoms. Prepulse inhibition of startle reflex (PPI) is a paradigm that assesses the sensorimotor gating functioning and is impaired in schizophrenia patients as well as in animal models of this disorder. Recent data point to the participation of the endocannabinoid system in the pathophysiology and pharmacotherapy of schizophrenia. Here, we focus on the effects of cannabinoid drugs on the PPI deficit of animal models of schizophrenia, with greater focus on the SHR (Spontaneously Hypertensive Rats) strain, and on the future prospects resulting from these findings.”

Cannabidiol as a Potential Treatment for Febrile Infection-Related Epilepsy Syndrome (FIRES) in the Acute and Chronic Phases.

Image result for journal of child neurology

“Febrile infection-related epilepsy syndrome (FIRES) is a devastating epilepsy affecting normal children after a febrile illness. FIRES presents with an acute phase with super-refractory status epilepticus and all patients progress to a chronic phase with persistent refractory epilepsy. The typical outcome is severe encephalopathy or death. The authors present 7 children from 5 centers with FIRES who had not responded to antiepileptic drugs or other therapies who were given cannabadiol (Epidiolex, GW Pharma) on emergency or expanded investigational protocols in either the acute or chronic phase of illness. After starting cannabidiol, 6 of 7 patients’ seizures improved in frequency and duration. One patient died due to multiorgan failure secondary to isoflourane. An average of 4 antiepileptic drugs were weaned. Currently 5 subjects are ambulatory, 1 walks with assistance, and 4 are verbal. While this is an open-label case series, the authors add cannabidiol as a possible treatment for FIRES.”

http://www.ncbi.nlm.nih.gov/pubmed/27655472

A preliminary evaluation of the relationship of cannabinoid blood concentrations with the analgesic response to vaporized cannabis.

Image result for journal of pain research

“A randomized, placebo-controlled crossover trial utilizing vaporized cannabis containing placebo and 6.7% and 2.9% delta-9-tetrahydrocannabinol (THC) was performed in 42 subjects with central neuropathic pain related to spinal cord injury and disease.

Dose-dependent improvement in pain score was evident across all pain scale elements.

Plans for future work are outlined to explore the relationship of plasma concentrations with the analgesic response to different cannabinoids.

Such an appraisal of descriptors might contribute to the identification of distinct pathophysiologic mechanisms and, ultimately, the development of mechanism-based treatment approaches for neuropathic pain, a condition that remains difficult to treat.”

http://www.ncbi.nlm.nih.gov/pubmed/27621666