Cannabinoid mechanisms of pain suppression.

Abstract

“A large body of literature indicates that cannabinoids suppress behavioral responses to acute and persistent noxious stimulation in animals. This review examines neuroanatomical, behavioral, and neurophysiological evidence supporting a role for cannabinoids in suppressing pain at spinal, supraspinal, and peripheral levels. Localization studies employing receptor binding and quantitative autoradiography, immunocytochemistry, and in situ hybridization are reviewed to examine the distribution of cannabinoid receptors at these levels and provide a neuroanatomical framework with which to understand the roles of endogenous cannabinoids in sensory processing. Pharmacological and transgenic approaches that have been used to study cannabinoid antinociceptive mechanisms are described. These studies provide insight into the functional roles of cannabinoid CB1 (CB1R) and CB2 (CB2R) receptor subtypes in cannabinoid antinociceptive mechanisms, as revealed in animal models of acute and persistent pain. The role of endocannabinoids and related fatty acid amides that are implicated in endogenous mechanisms for pain suppression are discussed. Human studies evaluating therapeutic potential of cannabinoid pharmacotherapies in experimental and clinical pain syndromes are evaluated. The potential of exploiting cannabinoid antinociceptive mechanisms in novel pharmacotherapies for pain is discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/16596786

Recent data on cannabinoids and their pharmacological implications in neuropathic pain.

Abstract

“Natural cannabinoids have been used for centuries for their psychotropic properties, but their possible therapeutic implications in analgesia have been recently documented. The present review intended to make an analysis of the neuroanatomy and physiology of the cannabinoid system (receptors, functions, agents acting on these receptors) and of its implications in neuropathic pain. There were also described the complex phenomena implicated in the generation and maintenance of neuropathic pain, by high lightening the implications of endogenous cannabinoids in this complex of painful conditions. The pharmacological analgesia test proves of cannabinoid implication in neuropathic pain was sustained by many studies presented in this paper. Therapeutic approaches using natural and synthetic cannabinoid receptor agonists were reviewed. Therapeutic perspectives in neuropathic pain might involve the development of new agents that influence the cannabinoid system. Thus, peripheral acting cannabinoid 1 receptors agonists, selective cannabinoid 2 receptor agonists and also modulators of endocannabinoids metabolism might be a way to success in the treatment of this complex entity called neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/20108515

The Endocannabinoid System and Pain

Gallery

“Cannabis has been used for more than twelve thousand years and for many different purposes (i.e. fiber, medicinal, recreational). However, the endocannabinoid signaling system has only recently been the focus of medical research and considered a potential therapeutic target. Endocannabinoids … Continue reading

The cannabinoid system and pain: towards new drugs?

Abstract

“The various components of the endocannabinoid system were discovered in the last twenty years. The cannabinoid system has attracted pharmacologists interest for its potential as therapeutic targets for several diseases ranging from obesity to Parkinson’s disease and from multiple sclerosis to pain. Research initially focused on cannabinoid receptor 1 (CB1), but, due to psychotropic side effects related to its activation, the attempts to develop an agonist drug for this receptor has been so far unsuccessful. Recently the possibility to target CB2 has emerged as an alternative for the treatment of pain. The main advantage of targeting CB2 resides in the possibility to elicit the analgesic effect without the psychotropic side effects. Evidence of the analgesic effect of CB2 selective agonists has been obtained in various models of both inflammatory and neuropathic chronic pain. To explain the mechanism at the basis of this analgesic effect different hypotheses have been proposed: effect on inflammatory cells, reduction of basal NGF tone, induction of beta-endorphin release from keratinocytes, direct action on nociceptors. Evidence in support of this last hypothesis comes from down regulation of capsaicin-induced CGRP release in spinal cord slices and Dorsal Root Ganglia (DRG) neurons in culture after treatment with CB2 selective agonists. CB2 agonists are probably acting through several mechanisms and thus CB2 represents an interesting and promising target in the chronic pain field. Further clarification of the mechanisms at the basis of CB2 analgesic effect would surely be an intriguing and stimulating area of research for the years to come.”

http://www.ncbi.nlm.nih.gov/pubmed/19358815

Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain.

Abstract

“Cannabinoids suppress behavioural responses to noxious stimulation and suppress nociceptive transmission through activation of CB1 and CB2 receptor subtypes. CB1 receptors are expressed at high levels in the central nervous system (CNS), whereas CB2 receptors are found predominantly, but not exclusively, outside the CNS. CB2 receptors are also upregulated in the CNS and dorsal root ganglia by pathological pain states. Here, we review behavioural, neurochemical and electrophysiological data, which identify cannabinoid CB2 receptors as a therapeutic target for treating pathological pain states with limited centrally, mediated side effects. The development of CB2-selective agonists (with minimal affinity for CB1) as well as mutant mice lacking CB2 receptors has provided pharmacological and genetic tools required to evaluate the effectiveness of CB2 agonists in suppressing persistent pain states. This review will examine the efficacy of cannabinoid CB2-selective agonists in suppressing acute, inflammatory and neuropathic nociception following systemic and local routes of administration. Data derived from behavioural, neurochemical and neurophysiological approaches are discussed to better understand the relationship between antinociceptive effects induced by CB2-selective agonists in behavioural studies and neural mechanisms of pain suppression. Finally, the therapeutic potential and possible limitations of CB2-based pharmacotherapies for pathological pain states induced by tissue and nerve injury are discussed.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219541/

Activation of cannabinoid CB1 and CB2 receptors suppresses neuropathic nociception evoked by the chemotherapeutic agent vincristine in rats.

“BACKGROUND AND PURPOSE:

The ability of cannabinoids to suppress mechanical hypersensitivity (mechanical allodynia) induced by treatment with the chemotherapeutic agent vincristine was evaluated in rats. Sites of action were subsequently identified.

CONCLUSIONS AND IMPLICATIONS:

Cannabinoids suppress the maintenance of vincristine-induced mechanical allodynia through activation of CB1 and CB2 receptors. These anti-allodynic effects are mediated, at least in part, at the level of the spinal cord.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2190028/

Activation of peripheral cannabinoid CB1 and CB2 receptors suppresses the maintenance of inflammatory nociception: a comparative analysis.

“Background and Purpose:

Effects of locally administered agonists and antagonists for cannabinoid CB1 and CB2 receptors on mechanical and thermal hypersensitivity were compared after the establishment of chronic inflammation.

Conclusions and Implications:

Cannabinoids act locally through distinct CB1 and CB2 mechanisms to suppress mechanical hypersensitivity after the establishment of chronic inflammation, at doses that produced modest changes in thermal hyperalgesia. Additive antihyperalgesic effects were observed following prophylactic co-administration of the CB1– and CB2-selective agonists. Our results suggest that peripheral cannabinoid antihyperalgesic actions may be exploited for treatment of inflammatory pain states.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2042894/

Targeting cannabinoid agonists for inflammatory and neuropathic pain.

Abstract

“The cannabinoid receptors CB(1) and CB(2) are class A G-protein-coupled receptors. It is well known that cannabinoid receptor agonists produce relief of pain in a variety of animal models by interacting with cannabinoid receptors. CB(1) receptors are located centrally and peripherally, whereas CB(2) receptors are expressed primarily on immune cells and tissues. A large body of preclinical data supports the hypothesis that either CB(2)-selective agonists or CB(1) agonists acting at peripheral sites, or with limited CNS exposure, will inhibit pain and neuroinflammation without side effects within the CNS. There has been a growing interest in developing cannabinoid agonists. Many new cannabinoid ligands have been synthesized and studied covering a wide variety of novel structural scaffolds. This review focuses on the present development of cannabinoid agonists with an emphasis on selective CB(2) agonists and peripherally restricted CB(1) or CB(1)/CB(2) dual agonists for treatment of inflammatory and neuropathic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/17594182

Cannabinoid receptors and pain.

Abstract

“Mammalian tissues contain at least two types of cannabinoid receptor, CB(1) and CB(2), both coupled to G proteins. CB(1) receptors are expressed mainly by neurones of the central and peripheral nervous system whereas CB(2) receptors occur centrally and peripherally in certain non-neuronal tissues, particularly in immune cells. The existence of endogenous ligands for cannabinoid receptors has also been demonstrated. The discovery of this ‘endocannabinoid system’ has prompted the development of a range of novel cannabinoid receptor agonists and antagonists, including several that show marked selectivity for CB(1) or CB(2) receptors. It has also been paralleled by a renewed interest in cannabinoid-induced antinociception. This review summarizes current knowledge about the ability of cannabinoids to produce antinociception in animal models of acute pain as well as about the ability of these drugs to suppress signs of tonic pain induced in animals by nerve damage or by the injection of an inflammatory agent. Particular attention is paid to the types of pain against which cannabinoids may be effective, the distribution pattern of cannabinoid receptors in central and peripheral pain pathways and the part that these receptors play in cannabinoid-induced antinociception. The possibility that antinociception can be mediated by cannabinoid receptors other than CB(1) and CB(2) receptors, for example CB(2)-like receptors, is also discussed as is the evidence firstly that one endogenous cannabinoid, anandamide, produces antinociception through mechanisms that differ from those of other types of cannabinoid, for example by acting on vanilloid receptors, and secondly that the endocannabinoid system has physiological and/or pathophysiological roles in the modulation of pain.”

http://www.ncbi.nlm.nih.gov/pubmed/11164622

Cannabinoid CB2 receptor-mediated anti-nociception in models of acute and chronic pain.

Abstract

“The endocannabinoid system consists of cannabinoid CB(1) and CB(2) receptors, endogenous ligands and their synthesising/metabolising enzymes. Cannabinoid receptors are present at key sites involved in the relay and modulation of nociceptive information. The analgesic effects of cannabinoids have been well documented. The usefulness of nonselective cannabinoid agonists can, however, be limited by psychoactive side effects associated with activation of CB(1) receptors. Following the recent evidence for CB(2) receptors existing in the nervous system and reports of their up-regulation in chronic pain states and neurodegenerative diseases, much research is now aimed at shedding light on the role of the CB(2) receptor in human disease. Recent studies have demonstrated anti-nociceptive effects of selective CB(2) receptor agonists in animal models of pain in the absence of CNS side effects. This review focuses on the analgesic potential of CB(2) receptor agonists for inflammatory, post-operative and neuropathic pain states and discusses their possible sites and mechanisms of action”

http://www.ncbi.nlm.nih.gov/pubmed/17952647