[A role for the endocannabinoid system in obesity].

Abstract

“Endocannabinoids are the endogenous ligands for the cannabinoid receptors type 1 and 2. These membrane receptors are responsible for the psychotropic effects of Cannabis Sativa, when bound to its active component known as (-)-Delta(9)-tetrahydro-cannabinol. Cannabinoid receptors, endocannabinoids and the enzymes catalyzing their biosynthesis and degradation, constitute the endocannabinoid system (ECS), which has a remarkable role controlling energy balance, both at central nervous system and peripheral tissues. The ECS regulates food ingestion by stimulating a network of orexigenic neurons present in the hypothalamus and reinforcing motivation and reward to food consumption in the nucleus accumbens. Regarding peripheral tissues, this system controls lipid and glucose metabolism at different levels, reduces energy expenditure and leads energy balance to fat storage. Metabolic alterations, including excessive accumulation of abdominal fat, dyslipidaemia and hyperglicaemia, are suggested to be associated to a hyperactivated ECS. Since obesity is one of the major health problems in modern societies, in this review we discuss the role of the endocannabinoid system in metabolic pathways associated to control mechanisms of energy balance and its involvement in overweight and obesity. In addition, we also discuss therapeutic possibilities and emergent problems due to cannabinoid receptor type 1 antagonism utilized as treatment for such alterations.”

http://www.ncbi.nlm.nih.gov/pubmed/20668819

Pharmacotherapeutic targeting of the endocannabinoid signaling system: drugs for obesity and the metabolic syndrome.

Abstract

“Endogenous signaling lipids (“endocannabinoids”) functionally related to Delta(9)-tetrahydrocannabinol, the psychoactive ingredient of marijuana (Cannabis), are important biomediators and metabolic regulators critical to mammalian (patho)physiology. The growing family of endocannabinoids, along with endocannabinoid biosynthetic and inactivating enzymes, transporters, and at least two membrane-bound, G-protein coupled receptors, comprise collectively the mammalian endocannabinoid signaling system. The ubiquitous and diverse regulatory actions of the endocannabinoid system in health and disease have supported the regulatory approval of natural products and synthetic agents as drugs that alter endocannabinoid-system activity. More recent data support the concept that the endocananbinoid system may be modulated for therapeutic gain at discrete pharmacological targets with safety and efficacy. Potential medications based on the endocannabinoid system have thus become a central focus of contemporary translational research for varied indications with important unmet medical needs. One such indication, obesity, is a global pandemic whose etiology has a pathogenic component of endocannabinoid-system hyperactivity and for which current pharmacological treatment is severely limited. Application of high-affinity, selective CB1 cannabinoid receptor ligands to attenuate endocannabinoid signaling represents a state-of-the-art approach for improving obesity pharmacotherapy. To this intent, several selective CB1 receptor antagonists with varied chemical structures are currently in advanced preclinical or clinical trials, and one (rimonabant) has been approved as a weight-management drug in some markets. Emerging preclinical data suggest that CB1 receptor neutral antagonists may represent breakthrough medications superior to antagonists/inverse agonists such as rimonabant for therapeutic attenuation of CB1 receptor transmission. Since obesity is a predisposing condition for the cluster of cardiovascular and metabolic derangements collectively known as the metabolic syndrome, effective endocannabinoid-modulatory anti-obesity therapeutics would also help redress other major health problems including type-2 diabetes, atherothrombosis, inflammation, and immune disorders. Pressing worldwide healthcare needs and increasing appreciation of endocannabinoid biology make the rational design and refinement of targeted CB1 receptor modulators a promising route to future medications with significant therapeutic impact against overweight, obesity, obesity-related cardiometabolic dysregulation, and, more generally, maladies having a reward-supported appetitive component.”

http://www.ncbi.nlm.nih.gov/pubmed/18155257

Cannabinoid drugs and enhancement of endocannabinoid responses: strategies for a wide array of disease states.

Abstract

“The endogenous cannabinoid system has revealed potential avenues to treat many disease states. Medicinal indications of cannabinoid drugs including compounds that result in enhanced endocannabinoid responses (EER) have expanded markedly in recent years. The wide range of indications covers chemotherapy complications, tumor growth, addiction, pain, multiple sclerosis, glaucoma, inflammation, eating disorders, age-related neurodegenerative disorders, as well as epileptic seizures, traumatic brain injury, cerebral ischemia, and other excitotoxic insults. Indeed, a great effort has led to the discovery of agents that selectively activate the cannabinoid system or that enhance the endogenous pathways of cannabinergic signaling. The endocannabinoid system is comprised of three primary components: (i) cannabinoid receptors, (ii) endocannabinoid transport system, and (iii) hydrolysis enzymes that break down the endogenous ligands. Two known endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), are lipid molecules that are greatly elevated in response to a variety of pathological events. This increase in endocannabinoid levels is suggested to be part of an on-demand compensatory response. Furthermore, activation of signaling pathways mediated by the endogenous cannabinoid system promotes repair and cell survival. Similar cell maintenance effects are elicited by EER through inhibitors of the endocannabinoid deactivation processes (i.e., internalization and hydrolysis). The therapeutic potential of the endocannabinoid system has yet to be fully determined, and the number of medical maladies that may be treated will likely continue to grow. This review will underline studies that demonstrate medicinal applications for agents that influence the endocannabinoid system.”

http://www.ncbi.nlm.nih.gov/pubmed/17022737

The Endocannabinoid System as an Emerging Target of Pharmacotherapy

Abstract

“The recent identification of cannabinoid receptors and their endogenous lipid ligands has triggered an exponential growth of studies exploring the endocannabinoid system and its regulatory functions in health and disease. Such studies have been greatly facilitated by the introduction of selective cannabinoid receptor antagonists and inhibitors of endocannabinoid metabolism and transport, as well as mice deficient in cannabinoid receptors or the endocannabinoid-degrading enzyme fatty acid amidohydrolase. In the past decade, the endocannabinoid system has been implicated in a growing number of physiological functions, both in the central and peripheral nervous systems and in peripheral organs. More importantly, modulating the activity of the endocannabinoid system turned out to hold therapeutic promise in a wide range of disparate diseases and pathological conditions, ranging from mood and anxiety disorders, movement disorders such as Parkinson’s and Huntington’s disease, neuropathic pain, multiple sclerosis and spinal cord injury, to cancer, atherosclerosis, myocardial infarction, stroke, hypertension, glaucoma, obesity/metabolic syndrome, and osteoporosis, to name just a few. An impediment to the development of cannabinoid medications has been the socially unacceptable psychoactive properties of plant-derived or synthetic agonists, mediated by CB(1) receptors. However, this problem does not arise when the therapeutic aim is achieved by treatment with a CB(1) receptor antagonist, such as in obesity, and may also be absent when the action of endocannabinoids is enhanced indirectly through blocking their metabolism or transport. The use of selective CB(2) receptor agonists, which lack psychoactive properties, could represent another promising avenue for certain conditions. The abuse potential of plant-derived cannabinoids may also be limited through the use of preparations with controlled composition and the careful selection of dose and route of administration. The growing number of preclinical studies and clinical trials with compounds that modulate the endocannabinoid system will probably result in novel therapeutic approaches in a number of diseases for which current treatments do not fully address the patients’ need. Here, we provide a comprehensive overview on the current state of knowledge of the endocannabinoid system as a target of pharmacotherapy.”

Future Directions

“The length of this review, necessitated by the steady growth in the number of indications for the potential therapeutic use of cannabinoid-related medications, is a clear sign of the emerging importance of this field. This is further underlined by the quantity of articles in the public database dealing with the biology of cannabinoids, which numbered ∼200 to 300/year throughout the 1970s to reach an astonishing 5900 in 2004. The growing interest in the underlying science has been matched by a growth in the number of cannabinoid drugs in pharmaceutical development from two in 1995 to 27 in 2004, with the most actively pursued therapeutic targets being pain, obesity, and multiple sclerosis (Hensen, 2005). As in any rapidly growing area of research, not all the leads will turn out to be useful or even valid. Nevertheless, it is safe to predict that new therapeutic agents that affect the activity of the endocannaboinoid system will emerge and become members of our therapeutic armamentarium. The plant-derived cannabinoid preparation Sativex has already gained regulatory approval in Canada for the treatment of spasticity and pain associated with multiple sclerosis, and the CB1 receptor antagonist rimonabant has been approved in Europe and is awaiting Food and Drug Administration approval in the United States for the treatment of the metabolic syndrome. Undoubtedly, these will be followed by new and improved compounds aimed at the same or additional targets in the endocannabinoid system. However, it may be only after the widespread therapeutic use of such compounds that some important side effects will emerge. Although this occurrence would be undesirable from a health care perspective, such side effects may shed further light on the biological functions of endocannabinoids in health and disease.”

http://pharmrev.aspetjournals.org/content/58/3/389.long

The Endocannabinoid System and the Brain.

Abstract

“The psychoactive constituent in cannabis, Δ(9)-tetrahydrocannabinol (THC), was isolated in the mid-1960s, but the cannabinoid receptors, CB1 and CB2, and the major endogenous cannabinoids (anandamide and 2-arachidonoyl glycerol) were identified only 20 to 25 years later. The cannabinoid system affects both central nervous system (CNS) and peripheral processes. In this review, we have tried to summarize research-with an emphasis on recent publications-on the actions of the endocannabinoid system on anxiety, depression, neurogenesis, reward, cognition, learning, and memory. The effects are at times biphasic-lower doses causing effects opposite to those seen at high doses. Recently, numerous endocannabinoid-like compounds have been identified in the brain. Only a few have been investigated for their CNS activity, and future investigations on their action may throw light on a wide spectrum of brain functions. Expected final online publication date for the Annual Review of Psychology Volume 64 is November 30, 2012. Please see http://www.annualreviews.org/catalog/pubdates.aspx for revised estimates.”

http://www.ncbi.nlm.nih.gov/pubmed/22804774

Endocannabinoid system: An overview of its potential in current medical practice.

Abstract

“The endocannabinoid system (ECS) is a lipid signalling system, comprising of the endogenous cannabis-like ligands (endocannabinoids) anandamide (AEA) and 2-arachidonoylglycerol (2-AG), which derive from arachidonic acid. These bind to a family of G-protein-coupled receptors, called CB1 and CB2. The cannabinoid receptor 1 (CB1R) is distributed in brain areas associated with motor control, emotional responses, motivated behaviour and energy homeostasis. In the periphery, the same receptor is expressed in the adipose tissue, pancreas, liver, GI tract, skeletal muscles, heart and the reproduction system. The CB2R is mainly expressed in the immune system regulating its functions. Endocannabinoids are synthesized and released upon demand in a receptor-dependent way. They act as retrograde signalling messengers in GABAergic and glutamatergic synapses and as modulators of postsynaptic transmission, interacting with other neurotransmitters. Endocannabinoids are transported into cells by a specific uptake system and degraded by the enzymes fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). The ECS is involved in various pathophysiological conditions in central and peripheral tissues. It is implicated in the hormonal regulation of food intake, cardiovascular, gastrointestinal, immune, behavioral, antiproliferative and mammalian reproduction functions. Recent advances have correlated the ECS with drug addiction and alcoholism. The growing number of preclinical and clinical data on ECS modulators is bound to result in novel therapeutic approaches for a number of diseases currently treated inadequately. The ECS dysregulation has been correlated to obesity and metabolic syndrome pathogenesis. Rimonabant is the first CB1 blocker launched to treat cardiometabolic risk factors in obese and overweight patients. Phase III clinical trials showed the drug’s ability to regulate intra-abdominal fat tissue levels, lipidemic, glycemic and inflammatory parameters. However, safety conerns have led to its withrawal. The role of endocannabinoids in mammalian reproduction is an emerging research area given their implication in fertilization, preimplantation embryo and spermatogenesis. The relevant preclinical data on endocannabinoid signalling open up new perspectives as a target to improve infertility and reproductive health in humans.”

http://www.ncbi.nlm.nih.gov/pubmed/19675519

Neurobiology and systems physiology of the endocannabinoid system.

Abstract

“Endocannabinoids are synthesised from lipid precursors, are released from postsynaptic neurons in an activity-dependent way, and act as retrograde signalling messengers on specific G (i)-protein-coupled cannabinoid (CB (1)) receptors on presynaptic terminals. Hence, endocannabinoids are in a strategic position to regulate transmitter release. CB (1)-receptors are abundant on GABAergic, glutamatergic and dopaminergic synapses and play an essential role in a variety of cognitive processes and in the control of behaviour. The endocannabinoid system is not only the target of the psychoactive components of the hemp plant (tetrahydrocannabinol from hashish and marijuana) but has also been exploited for drugs acting as agonists (e.g. dronabinol) or antagonists (e.g. rimonabant) of the CB (1)-receptor. The former drugs exert orexigenic effects and can be used for the mitigation of anorexia e.g. in cancer patients, but have also been used for the treatment of multiple sclerosis. The latter have been used to treat adipositas. The role of the endocannabinoid system in the development of drug dependence has been discussed controversially, but recent evidence suggests that chronic stimulation of the endocannabinoid system may facilitate drug dependence.”

http://www.ncbi.nlm.nih.gov/pubmed/19434559

Endocannabinoid chemical biology: a tool for the development of novel therapies.

Abstract

“The identification of the major psychoactive constituent of Cannabis and marijuana, Delta(9)-tetrahydrocannabinol, opened the way first to the cloning of the G-protein-coupled cannabinoid CB(1) and CB(2) receptors, and then to the isolation and characterisation of their endogenous agonists, the endocannabinoids. Considerable progress has been made in the characterisation of pathways and enzymes for the biosynthesis and degradation of anandamide and 2-arachidonoylglycerol, the two best-known endocannabinoids, as well as of endocannabinoid-related molecules, such as the N-acylethanolamines, which, as in the case of N-palmitoylethanolamine and N-oleoylethanolamine, may interact with other receptor types. However, it is still not fully understood how other plant cannabinoids, of which cannabidiol is the most studied representative, exert their pharmacological effects. Together with these issues, this first review article on the endocannabinoids describes the synthetic pharmacological tools that have been designed so far to interact with the proteins of the ‘endocannabinoid system’ and that can potentially be used as templates for the development of new therapies.”

http://www.ncbi.nlm.nih.gov/pubmed/19457702

The endocannabinoid system: a general view and latest additions

Abstract

“After the discovery, in the early 1990s, of specific G-protein-coupled receptors for marijuana’s psychoactive principle Delta(9)-tetrahydrocannabinol, the cannabinoid receptors, and of their endogenous agonists, the endocannabinoids, a decade of investigations has greatly enlarged our understanding of this altogether new signalling system. Yet, while the finding of the endocannabinoids resulted in a new effort to reveal the mechanisms regulating their levels in the brain and peripheral organs under physiological and pathological conditions, more endogenous substances with a similar action, and more molecular targets for the previously discovered endogenous ligands, anandamide and 2-arachidonoylglycerol, or for some of their metabolites, were being proposed. As the scenario becomes subsequently more complicated, and the experimental tasks to be accomplished correspondingly more numerous, we briefly review in this article the latest ‘additions’ to the endocannabinoid system together with earlier breakthroughs that have contributed to our present knowledge of the biochemistry and pharmacology of the endocannabinoids.”

Introduction

“The discovery in the early 1990s of specific membrane receptors of marijuana’s psychoactive component (-)-Δ9-tetrahydrocannabinol (THC) opened the way to the revelation of a whole endogenous signaling system now known as the endocannabinoid system. Apart from the cannabinoid CB1 and CB2 receptors (Pertwee, 1997), this system comprises also their endogenous ligands (the endocannabinoids) and the proteins for their synthesis and inactivation, as well as other molecular targets for the endocannabinoids. However, as new findings on the regulation of the levels and action of the endocannabinoids, and new data on their possible physiological and pathological role, are reported every day in the literature, it is easy to understand that the story of the endocannabinoid system is far from set. For example, while until the end of the 20th century only two endocannabinoids, anandamide (N-arachidonoyl-ethanolamine, AEA) and 2-arachidonoyl-glycerol (2-AG) had been discovered (Devane et al., 1992; Mechoulam et al., 1995; Sugiura et al., 1995), in just a couple of years, three more candidates to the role of cannabinoid receptor agonists have been proposed: 2-arachidonyl-glyceryl ether (noladin, 2-AGE), O-arachidonoyl-ethanolamine (virhodamine) and N-arachidonoyl-dopamine (NADA) (Bisogno et al., 2000; Huang et al., 2002; Porter et al., 2002). These findings not only suggest that the endocannabinoid family is larger than initially thought but also enlarge our view on the possible molecular mechanisms for the biosynthesis, action and inactivation of these lipid mediators. This brief article aims at giving a picture as much updated as possible on the ‘old’ and ‘new’ components of the endocannabinoid system, while highlighting the latest and most important findings in this field.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1574255/

 

The endocannabinoid system: its general strategy of action, tools for its pharmacological manipulation and potential therapeutic exploitation.

Abstract

“The endocannabinoid signalling system includes: (1) at least two G-protein-coupled receptors, known as the cannabinoid CB(1) and CB(2) receptors and discovered following studies on the mechanism of action of Delta(9)-tetrahydrocannabinol, the major psychoactive principle of the hemp plant Cannabis sativa; (2) the endogenous agonists at these receptors, known as endocannabinoids, of which anandamide and 2-arachidonoylglycerol are the best known; and (3) proteins and enzymes for the regulation of endocannabinoid levels and action at receptors. The endocannabinoid system is quite widespread in mammalian tissues and cells and appears to play a pro-homeostatic role by being activated following transient or chronic perturbation of homeostasis, and by regulating in a local way the levels and action of other chemical signals. Compounds that selectively manipulate the action and levels of endocannabinoids at their targets have been and are being developed, and represent templates for potential new therapeutic drugs.”

http://www.ncbi.nlm.nih.gov/pubmed/19559360