Cannabidiol potentiates pharmacological effects of Delta(9)-tetrahydrocannabinol via CB(1) receptor-dependent mechanism.

“Cannabidiol, a non-psychoactive component of cannabis, has been reported to have interactions with Delta(9)-tetrahydrocannabinol (Delta(9)-THC)…

In the present study, we investigated whether cannabidiol modulates the pharmacological effects of Delta(9)-THC…

Cannabidiol potentiated pharmacological effects of Delta(9)-THC via CB(1) receptor-dependent mechanism.

These findings may contribute in setting the basis for interaction of cannabinoids and to find a cannabinoid mechanism in central nervous system.”

http://www.ncbi.nlm.nih.gov/pubmed/18021759

Marijuana Compounds Possess Synergistic Anti-Cancer Effects, Study Says

“Marijuana’s active compounds act synergistically to inhibit the growth of cancer cells and induce malignant cell death, according to preclinical trial data published online by the journal Molecular Cancer Therapeutics.

Investigators at the University of California, Pacific Medical Center Research Institute assessed whether the administration of the non-psychoactive cannabidiol would enhance the anti-cancer effects of THC on glioblastoma (brain cancer) cells.

Researchers reported that a combination of cannabinoids showed greater anti-cancer activity than the administration of either compound individually. “We discovered that cannabidiol enhanced the ability of THC to inhibit cell proliferation and induce cell cycle arrest and apoptosis (programmed cell death),” authors reported.

Investigators concluded: “Individually, THC and cannabidiol can activate distinct pathways in glioblastoma cells that ultimately culminate in inhibition of cancer cell growth and invasion as well as induction of cell death. We hypothesized that, if the individual agents were combined, a convergence on shared pathways may ensue, leading to an enhanced ability of the combination treatment to inhibit certain cancer cell phenotypes. We found this to be true in this investigation.”

A 2008 scientific review published in the journal Cancer Research reported that the cannabinioids inhibit cell proliferation in a wide range of cancers, including brain cancer, prostate cancer, breast cancer, lung cancer, skin cancer, pancreatic cancer, and lymphoma.”

http://norml.org/news/2010/01/21/marijuana-compounds-possess-synergistic-anti-cancer-effects-study-says

Cannabidiol enhances the inhibitory effects of Δ9-tetrahydrocannabinol on human glioblastoma cell proliferation and survival

Molecular Cancer Therapeutics

Δ9-THC and other cannabinoids can act as direct anticancer agents in multiple types of cancer in culture and in vivo. 

Individually, Δ9-THC and CBD can activate distinct pathways in glioblastoma cells that ultimately culminate in inhibition of cancer cell growth and invasion as well as induction of cell death.

We hypothesized that, if the individual agents were combined, a convergence on shared pathways may ensue leading to an enhanced ability of the combination treatment to inhibit certain cancer cell phenotypes.

We found this to be true in this investigation.

CBD enhances the inhibitory effects of Δ9-THC on glioblastoma cell growth.

Cannabidiol significantly improved the inhibitory effects of Δ9-tetrahydrocannabinol on glioblastoma cell proliferation and survival.

The Combination Treatment of Δ9-THC and Cannabidiol Inhibits Cell Cycle and Induces Apoptosis.

Our results suggest that the addition of CBD to Δ9-THC may improve the overall effectiveness of Δ9-THC in the treatment of glioblastoma in cancer patients.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2806496/

http://mct.aacrjournals.org/content/9/1/180.full

“CBD Enhances the Anticancer Effects of THC”  https://www.scribd.com/document/50154001/CBD-Enhances-the-Anticancer-Effects-of-THC-Journal-MCT-Marcu

Cannabinoids Decrease the Th17 Inflammatory Autoimmune Phenotype.

“Cannabinoids, the Cannabis constituents, are known to possess anti-inflammatory properties but the mechanisms involved are not understood. Here we show that the main psychoactive cannabinoid, Δ-9-tetrahydrocannabinol (THC), and the main nonpsychoactive cannabinoid, cannabidiol (CBD), markedly reduce the Th17 phenotype which is known to be increased in inflammatory autoimmune pathologies such as Multiple Sclerosis…

Pretreatment with CBD also resulted in increased levels of the anti-inflammatory cytokine IL-10. Interestingly, CBD and THC did not affect the levels of TNFα and IFNγ. The downregulation of IL-17 secretion by these cannabinoids does not seem to involve the CB1, CB2, PPARγ, 5-HT1A or TRPV1 receptors…

In conclusion, the results show a unique cannabinoid modulation of the autoimmune cytokine milieu combining suppression of the pathogenic IL-17 and IL-6 cytokines along with boosting the expression of the anti-inflammatory cytokine IL-10.”

http://www.ncbi.nlm.nih.gov/pubmed/23892791

Cannabidiol Normalizes Caspase 3, Synaptophysin, and Mitochondrial Fission Protein DNM1L Expression Levels in Rats with Brain Iron Overload: Implications for Neuroprotection.

“We have recently shown that chronic treatment with cannabidiol (CBD) was able to recover memory deficits induced by brain iron loading in a dose-dependent manner in rats.

 Brain iron accumulation is implicated in the pathogenesis of neurodegenerative diseases, including Parkinson’s and Alzheimer’s, and has been related to cognitive deficits in animals and human subjects.

…we have analyzed the expression level of brain proteins involved with mitochondrial fusion and fission mechanisms (DNM1L and OPA1), the main integral transmembrane protein of synaptic vesicles (synaptophysin), and caspase 3, an apoptosis-related protein, to gain a better understanding of the potential of CBD in restoring the damage caused by iron loading in rats.

We found that CBD rescued iron-induced effects…

Our results suggest that iron affects mitochondrial dynamics, possibly trigging synaptic loss and apoptotic cell death and indicate that CBD should be considered as a potential molecule with memory-rescuing and neuroprotective properties to be used in the treatment of cognitive deficits observed in neurodegenerative disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/23893294

Marijuana Compound Shows Promise In Fighting Breast Cancer

“A compound found in cannabis may prove to be effective at helping stop the spread of breast cancer cells throughout the body.”

 

 
“The study, by scientists at the California Pacific Medical Center Research Institute, is raising hope that CBD, a compound found in Cannabis sativa, could be the first non-toxic agent to show promise in treating metastatic forms of breast cancer.”
 
 

“Cannabidiol as a novel inhibitor of Id-1 gene expression in aggressive breast cancer cells”  http://mct.aacrjournals.org/content/6/11/2921.full

Cannabis based spray approved for MS

“Sativex licensed for spasticity in multiple sclerosis. MS charity calls it a ‘milestone’
.
sad woman
 
“The cannabis-based mouth spray, Sativex, has been approved by the UK medicines regulator, MHRA, as a prescription only treatment for MS related spasticity.

Sativex is designed as an add-on treatment for moderate to severe MS spasms and cramping in people who receive inadequate relief from the standard oral anti-spasticity medicines or have experienced unbearable side effects whilst taking these medicines.

Sativex contains two cannabinoids or active ingredients – THC (delta-9-tetrahydrocannabinol) and CBD (cannabidiol).  It is the first cannabinoid medicine derived from whole plant extracts from the cannabis sativa plant…”

More: http://www.webmd.boots.com/news/20100621/cannabis-based-spray-approved-for-ms

Cannabidiol provides long-lasting protection against the deleterious effects of inflammation in a viral model of multiple sclerosis: A role for A2A receptors.

“Inflammation in the central nervous system (CNS) is a complex process that involves a multitude of molecules and effectors, and it requires the transmigration of blood leukocytes across the blood-brain barrier (BBB) and the activation of resident immune cells. Cannabidiol (CBD), a non-psychotropic cannabinoid constituent of Cannabis sativa, has potent anti-inflammatory and immunosuppressive properties.

 …Moreover, CBD administration at the time of viral infection exerts long-lasting effects, ameliorating motor deficits in the chronic phase of the disease in conjunction with reduced microglial activation and pro-inflammatory cytokine production. Adenosine A2A receptors participate in some of the anti-inflammatory effects of CBD…

Together, our findings highlight the anti-inflammatory effects of CBD in this viral model of MS, and demonstrate the significant therapeutic potential of this compound for the treatment of pathologies with an inflammatory component.”

http://www.ncbi.nlm.nih.gov/pubmed/23851307

Cannabinoids and Schizophrenia: Therapeutic Prospects.

“Approximately one third of patients diagnosed with schizophrenia do not achieve adequate symptom control with standard antipsychotic drugs (APs).

The endocannabinoid system (ECS) in the brain plays an important role in maintaining normal mental health.

ECS modulates emotion, reward processing, sleep regulation, aversive memory extinction and HPA axis regulation…

The cannabis plant synthesises a large number of pharmacologically active compounds unique to it known as phytocannabinoids. In contrast to the euphoric and pro-psychotic effects of delta-9-tetrahydrocannabinol (THC), certain non-intoxicating phytocannabinoids have emerged in pre-clinical and clinical models as potential APs.

Since the likely mechanism of action does not rely upon dopamine D2 receptor antagonism, synergistic combinations with existing APs are plausible.

The anti-inflammatory and immunomodulatory effects of the non-intoxicating phytocannabinoid cannabidiol (CBD) are well established and are summarised below.

Preliminary data reviewed in this paper suggest that CBD in combination with a CB1 receptor neutral antagonist could not only augment the effects of standard APs but also target the metabolic, inflammatory and stress-related components of the schizophrenia phenotype.”

http://www.ncbi.nlm.nih.gov/pubmed/23829368

“6”-Azidohex-2″-yne-cannabidiol: a potential neutral, competitive cannabinoid CB1 receptor antagonist… 6″-azidohex-2″-yne-cannabidiol was as potent as cannabidiol in producing surmountable antagonism… it is a competitive cannabinoid CB(1) receptor antagonist…it may be a neutral cannabinoid CB(1) receptor antagonist.”  http://www.ncbi.nlm.nih.gov/pubmed/15033394

 

Antibacterial activity of delta9-tetrahydrocannabinol and cannabidiol.

Image result for Antonie Van Leeuwenhoek. journal

“The minimum inhibiting concentrations (MIC) of delta9-tetrahydrocannabinol (THC) and cannabidiol (CBD) for staphylococci and streptococci in broth are in the range of 1-5 mug/ml.

In the same range, both compounds are also bactericidal.

In media containing 4% serum or 5% blood the antibacterial activity is strongly reduced (MIC 50 mug/ml). Gram-negative bacteria are resistant to THC and CBD.”

http://www.ncbi.nlm.nih.gov/pubmed/1085130