Endocannabinoids in the Gut.

“Cannabis has been used medicinally for centuries to treat a variety of disorders, including those associated with the gastrointestinal tract.

The discovery of our bodies’ own “cannabis-like molecules” and associated receptors and metabolic machinery – collectively called the endocannabinoid system – enabled investigations into the physiological relevance for the system, and provided the field with evidence of a critical function for this endogenous signaling pathway in health and disease.

Recent investigations yield insight into a significant participation for the endocannabinoid system in the normal physiology of gastrointestinal function, and its possible dysfunction in gastrointestinal pathology. Many gaps, however, remain in our understanding of the precise neural and molecular mechanisms across tissue departments that are under the regulatory control of the endocannabinoid system.

This review highlights research that reveals an important – and at times surprising – role for the endocannabinoid system in the control of a variety of gastrointestinal functions, including motility, gut-brain mediated fat intake and hunger signaling, inflammation and gut permeability, and dynamic interactions with gut microbiota.”


Comparing adults who use cannabis medically with those who use recreationally: Results from a national sample.

“There were no significant differences between those who used medically versus recreationally in race, education, past year depression and prevalence of cannabis use disorders. In adjusted analyses, those with medical cannabis use were more likely to have poorer health and lower levels of alcohol use disorders and non-cannabis drug use. A third of those who reported medical cannabis use endorsed daily cannabis use compared to 11% in those who reported recreational use exclusively.”


Cannabidiol and epilepsy: rationale and therapeutic potential.

“Despite the introduction of new antiepileptic drugs (AEDs), the quality of life and therapeutic response for patients with epilepsy remains still poor. Unfortunately, besides several advantages, these new AEDs have not satisfactorily reduced the number of refractory patients. Therefore, the need for different other therapeutic options to manage epilepsy is still a current issue.

To this purpose, emphasis has been given to phytocannabinoids, which have been medicinally used since ancient time in the treatment of neurological disorders including epilepsy.

In particular, the nonpsychoactive compound cannabidiol (CBD) has shown anticonvulsant properties, both in preclinical and clinical studies, with a yet not completely clarified mechanism of action.

However, it should be made clear that most phytocannabinoids do not act on the endocannabinoid system as in the case of CBD.

In in vivo preclinical studies, CBD has shown significant anticonvulsant effects mainly in acute animal models of seizures, whereas restricted data exist in chronic models of epilepsy as well as in animal models of epileptogenesis.

Likewise, clinical evidence seem to indicate that CBD is able to manage epilepsy both in adults and children affected by refractory seizures, with a favourable side effect profile.

However, to date, clinical trials are both qualitatively and numerically limited, thus yet inconsistent. Therefore, further preclinical and clinical studies are undoubtedly needed to better evaluate the potential therapeutic profile of CBD in epilepsy, although the actually available data is promising.”


Cannabinoids in the Treatment of Neurological Disorders

“The force of the recent explosion of largely unproven and unregulated cannabis-based preparations on medical therapeutics may have its greatest impact in the field of neurology.

Paradoxically, for 10 millennia this plant has been an integral part of human cultivation, where it was used for its fibers long before its pharmacological properties.

With regard to the latter, cannabis was well known to healers from China and India thousands of years ago; Greek and Roman doctors during classic times; Arab doctors during the Middle Ages; Victorian and Continental physicians in the nineteenth century; American doctors during the early twentieth century; and English doctors until 1971 when a variety of nonevidence-based remedies were removed from the British Pharmaceutical Codex.

The clinical data on cannabis therapeutics are meager and the vast majority are formed by surveys or small studies that are underpowered and/or suffer from multiple methodological flaws, often by virtue of limited research funding for nonaddiction-focused studies. Thus, we know relatively little about the clinical efficacy of cannabinoids for the various neurological disorders for which historical nonscientific and medical literature have advocated its use.

The relative scarcity of proven cannabis-based therapies is not due to data that show that cannabinoids are ineffective or unsafe, but rather reflects a poverty of medical interest and a failure by pharmaceutical companies arising from regulatory restrictions compounded by limits for patent rights on plant cannabinoid-containing preparations that have been used medicinally for millennia, as is the case for most natural products.

We are pleased to have gathered many of the world’s experts together on the basic biology of cannabinoids, as well as their potential role in treating neurologic and psychiatric disorders…

We hope that this issue of Neurotherapeutics will serve to mark the bounds of verifiable scientific knowledge of cannabinoids in the treatment of neuropsychiatric and neurological disorders. At the same time, our contributors have also helped identify areas for future research, as well as the strategies needed to move our base of knowledge forward.

We hope that this volume will help to accelerate the pace of the appropriately focused and productive research and double-blind placebo-controlled randomized trials to the point at which the care of patients is informed by valid data and not just anecdote.”


Cannabinoids: is there a potential treatment role in epilepsy?

“Cannabinoids have been used medicinally for centuries, and in the last decade, attention has focused on their broad therapeutic potential particularly in seizure management.

While some cannabinoids have demonstrated anticonvulsant activity in experimental studies, their efficacy for managing clinical seizures has not been fully established.

This commentary will touch on our understanding of the brain endocannabinoid system’s regulation of synaptic transmission in both physiological and pathophysiological conditions, and review the findings from both experimental and clinical studies on the effectiveness of cannabinoids to suppress epileptic seizures.

At present, there is preliminary evidence that non-psychoactive cannabinoids may be useful as anticonvulsants, but additional clinical trials are needed to fully evaluate the efficacy and safety of these compounds for the treatment of epilepsy.”


Evaluation of Phytocannabinoids from High Potency Cannabis sativa using In Vitro Bioassays to Determine Structure-Activity Relationships for Cannabinoid Receptor 1 and Cannabinoid Receptor 2.

“Cannabis has been around for thousands of years and has been used recreationally, medicinally, and for fiber.

Over 500 compounds have been isolated from Cannabis sativa with approximately 105 being cannabinoids. Of those 105 compounds, Δ9-tetrahydrocannabinol has been determined as the primary constituent, which is also responsible for the psychoactivity associated with Cannabis.

Cannabinoid receptors belong to the large superfamily of G protein-coupled receptors.

Targeting the cannabinoid receptors has the potential to treat a variety of conditions such as pain, neurodegeneration, appetite, immune function, anxiety, cancer, and others.

Developing in vitro bioassays to determine binding and functional activity of compounds has the ability to lead researchers to develop a safe and effective drug that may target the cannabinoid receptors…”


Therapeutic Satisfaction and Subjective Effects of Different Strains of Pharmaceutical-Grade Cannabis.

“The aims of this study are to assess the therapeutic satisfaction within a group of patients using prescribed pharmaceutical-grade cannabis and to compare the subjective effects among the available strains with special focus on their delta-9-tetrahydrocannabinol and cannabidiol content…

One hundred two patients were included; their average age was 53 years and 76% used it for more than a year preceding this study. Chronic pain (53%; n = 54) was the most common medical indication for using cannabis followed by multiple sclerosis (23%; n = 23), and 86% (n = 88) of patients (almost) always experienced therapeutic satisfaction when using pharmaceutical cannabis.

These results show that patients report therapeutic satisfaction with pharmaceutical cannabis, mainly pain alleviation. Some subjective effects were found to differ among the available strains of cannabis, which is discussed in relation to their different tetrahydrocannabinol/cannabidiol content. These results may aid in further research and critical appraisal for medicinally prescribed cannabis products.”


Targeting astrocytomas and invading immune cells with cannabinoids: a promising therapeutic avenue.

“The last quarter century has borne witness to great advances in both the detection and treatment of numerous cancers. Even so, malignancies of the central nervous system, especially high-grade astrocytomas, continue to thwart our best efforts toward effective chemotherapeutic strategies.

With prognosis remaining bleak, the time for serious consideration of alternative therapies has arrived. Various preparations of the marijuana plant, Cannabis sativa, and related synthetic and endogenous compounds, may constitute just such an alternative.

Cannabinoids, although much maligned historically for their psychotropic effects and clear abuse potential, have long been used medicinally and are now staging an impressive comeback, as recent studies have begun to explore their powerful anti-tumoral properties.

In this study, we review in vitro and in vivo evidence supporting the use of cannabinoids for treatment of brain tumors. We further propose the continued intense investigation of cannabinoid efficacies as novel anti-cancer agents, especially in models recapitulating such properties within the unique environment of the brain.”


Prescribing cannabis for harm reduction

“Neuropathic pain affects between 5% and 10% of the US population and can be refractory to treatment. Opioids may be recommended as a second-line pharmacotherapy but have risks including overdose and death. Cannabis has been shown to be effective for treating nerve pain without the risk of fatal poisoning. The author suggests that physicians who treat neuropathic pain with opioids should evaluate their patients for a trial of cannabis and prescribe it when appropriate prior to using opioids. This harm reduction strategy may reduce the morbidity and mortality rates associated with prescription pain medications.”

“Medicine relies upon the principle of, “First, do no harm,” and one might supplement the axiom to read – “First, do no harm, and second, reduce all the harm you can.” “Harm reduction” or “harm minimization” can be defined in the broadest sense as strategies designed to reduce risk or harm. Those harmed may include the individual, others impacted by the harmed person, and society. The substitution of a safer drug for one that is more dangerous is considered harm reduction. Specific examples of HR include prescribing methadone or buprenorphine to replace heroin, prescribing nicotine patches to be used instead of smoking tobacco, and prescribing intranasal naloxone to patients on opioid therapy to be utilized in case of overdose. Substituting cannabis for prescribed opioids may be considered a harm reduction strategy.”

“Under the Federal Controlled Substance Act “marihuana” is illegal and classified as a schedule I substance-meaning it has a high potential for abuse and no accepted medical use. However, sixteen states and the District of Columbia have legalized cannabis for medicinal use and these include Alaska, Arizona, California, Colorado, Delaware, Hawaii, Maine, Michigan, Montana, Nevada, New Jersey, New Mexico, Oregon, Rhode Island, Vermont, and Washington. Each state law differs but all allow physicians to “authorize” or “recommend” cannabis for specific ailments. This “recommendation” affords legal protections for patients to obtain and use medicinal cannabis, and may be considered the “prescription.””

“Cannabis (Cannabis sativa) and the opium poppy (Papaver somniferum) are both ancient plants that have been used medicinally for thousands of years. The natural and synthetic derivatives of opium, including morphine, are called “opioids.”  “Cannabinoids” is the term for a class of compounds within cannabis of which delta-9-tetrahydrocannabinol (THC) is the most familiar. Besides THC, approximately 100 other cannabinoids have been identified including one of special scientific interest called “cannabidiol” (CBD). The human body produces both endogenous cannabinoids (endocannabinoids) and opioids (endorphins) and contains specific receptors for these substances. There is an extensive literature on opioids but far less on cannabis/cannabinoids (CC).”