Cannabinoids Δ9-Tetrahydrocannabinol and Cannabidiol Differentially Inhibit the Lipopolysaccharide-activated NF-κB and Interferon-β/STAT Proinflammatory Pathways in BV-2 Microglial Cells

“Cannabinoids have been shown to exert anti-inflammatory activities in various in vivo and in vitro experimental models as well as ameliorate various inflammatory degenerative diseases. Δ9-Tetrahydrocannabinol (THC)is a major constituent of Cannabis and serves as an agonist of the cannabinoid receptors CB1 and CB2.

The second major constituent of Cannabis extract is cannabidiol (CBD). CBD lacks the psychoactive effects that accompany the use of THC. Moreover, CBD was demonstrated to antagonize some undesirable effects of THC, including intoxication, sedation, and tachycardia, while sharing neuroprotective, anti-oxidative, anti-emetic, and anti-carcinogenic properties. Both THC and CBD have been shown to exert anti-inflammatory properties and to modulate the function of immune cells…

In summary, our results show that although both THC and CBD exert anti-inflammatory effects, the two compounds engage different, although to some extent overlapping, intracellular pathways. Both THC and CBD decrease the activation of proinflammatory signaling…

 The cannabinoids by moderating or disrupting these signaling networks may show promise as anti-inflammatory agents.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804319/

Cannabinoid Receptor Type 1 Protects Nigrostriatal Dopaminergic Neurons against MPTP Neurotoxicity by Inhibiting Microglial Activation

“The present in vivo and in vitro findings clearly indicate that the CB1 receptor possesses anti-inflammatory properties and inhibits microglia-mediated oxidative stress.

 Our results collectively suggest that the cannabinoid system is beneficial for the treatment of Parkinson’s disease and other disorders associated with neuroinflammation and microglia-derived oxidative damage.

CB1 receptor is a useful pharmacological target for treating PD and other disorders associated with neuroinflammation and microglia-derived oxidative damage. ”

http://www.jimmunol.org/content/187/12/6508.long

Cannabinoids and neurodegenerative diseases.

“Although significant advances have taken place in recent years on our understanding of the molecular mechanisms of different neurodegenerative diseases, its translation into effective therapeutic treatments has not been as successful as could be expected. There is still a dramatic lack of curative treatments for the most frequent disorders and only symptomatic relief for many others. Under this perspective, the search for novel therapeutic approaches is demanding and significant attention and efforts have been directed to studying additional neurotransmission systems including the endocannabinoid system (ECS).

The neuroprotective properties of exogenous as well as endogenous cannabinoids have been known for years and the underlying molecular mechanisms have been recently unveiled. As discussed later, antioxidative, antiglutamatergic and antiinflammatory effects are now recognized as derived from cannabinoid action and are known to be of common interest for many neurodegenerative processes.

 Thus, these characteristics make cannabinoids attractive candidates for the development of novel therapeutic strategies.

 The present review will focus on the existing data regarding the possible usefulness of cannabinoid agents for the treatment of relevant neurological pathologies for our society such as Alzheimer’s disease, multiple sclerosis, Huntington’s disease and amyotrophic lateral sclerosis.”

http://www.ncbi.nlm.nih.gov/pubmed/19839933

Contrasting protective effects of cannabinoids against oxidative stress and amyloid-β evoked neurotoxicity in vitro.

“Cannabinoids have been widely reported to have neuroprotective properties in vitro and in vivo. In this study we compared the effects of CB1 and CB2 receptor-selective ligands, the endocannabinoid anandamide and the phytocannabinoid cannabidiol, against oxidative stress and the toxic hallmark Alzheimer’s protein, β-amyloid (Aβ)…

 …the endocannabinoid anandamide protects neuronal cells from Aβ exposure via a pathway unrelated to CB1 or CB2 receptor activation…protective effect of cannabidiol against oxidative stress…

…divergent pathways for neuroprotection of these two cannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/22233683

CB1 cannabinoid receptor activation rescues amyloid β-induced alterations in behaviour and intrinsic electrophysiological properties of rat hippocampal CA1 pyramidal neurones.

“Amyloid beta (Aβ) is believed to be responsible for the synaptic failure that occurs in Alzheimer’s disease (AD), but there is little known about the functional impact of Aβ on intrinsic neuronal properties. Here, the cellular effect of Aβ-induced neurotoxicity on the electrophysiological properties of CA1 pyramidal neurons and the mechanism(s) of neuroprotection by CB1 cannabinoid receptor activation was explored.

CONCLUSIONS:

In vivo Aβ treatment altered significantly the intrinsic electrophysiological properties of CA1 pyramidal neurons and the activation of CB1 cannabinoid receptors exerted a strong neuroprotective action against Aβ toxicity.”

http://www.ncbi.nlm.nih.gov/pubmed/22508047

Distribution patterns of cannabinoid CB1 receptors in the hippocampus of APPswe/PS1ΔE9 double transgenic mice.

Abstract

“Cannabinoids have neuroprotective effects that are exerted primarily through cannabinoid CB1 receptors in the brain. This study characterized CB1 receptor distribution in the double transgenic (dtg) APP(swe)/PS1(ΔE9) mouse model for Alzheimer’s disease. Immunohistochemical labeling of CB1 protein in non-transgenic mice revealed that CB1 was highly expressed in the hippocampus, with the greatest density of CB1 protein observed in the combined hippocampal subregions CA2 and CA3 (CA2/3). CB1 immunoreactivity in the CA1 and CA2/3 hippocampal regions was significantly decreased in the dtg APP(swe)/PS1(ΔE9) mice compared to non-transgenic littermates. Reduced CB1 expression in dtg APP(swe)/PS1(ΔE9) mice was associated with astroglial proliferation and elevated expression of the cytokines inducible nitric oxide synthase and tumor necrosis factor alpha. This finding suggests an anti-inflammatory effect of cannabinoids that is mediated by CB1 receptor, particularly in the CA2/3 region of the hippocampus. Furthermore, the study suggests a decreased CB1 receptor expression may result in diminished anti-inflammatory processes, exacerbating the neuropathology associated with Alzheimer’s disease.”

http://www.ncbi.nlm.nih.gov/pubmed/21192920

Nonpsychoactive Cannabidiol Prevents Prion Accumulation and Protects Neurons against Prion Toxicity

“Creutzfeldt–Jakob disease (CJD) in humans belongs to a group of fatal neurodegenerative disorders called transmissible spongiform encephalopathies (TSEs) or prion diseases. No therapeutic treatments against TSEs are currently available. The urgent need to find effective anti-prion therapies has been strengthened by the emergence of variant CJD (vCJD) caused by contaminated beef consumption …

Our results suggest that CBD may protect neurons against the multiple molecular and cellular factors involved in the different steps of the neurodegenerative process, which takes place during prion infection. When combined with its ability to target the brain and its lack of toxic side effects, CBD may represent a promising new anti-prion drug.

Overall, CBD is a promising therapeutic drug against the TSEs because it combines several crucial characteristics. It has a low toxicity and lack of psychotropic side effects as well as in vivo neuroprotective, anti-inflammatory, and anti-PrPres properties. Because CBD easily crosses the BBB, it also has the potential to be effective after prion infection has reached the CNS. Finally, prolonged treatments with CBD do not induce tolerance, a phenomenon frequently observed with THC. Additional investigations should be performed to define the optimal dose, route, frequency, and duration of the in vivo CBD treatment necessary to prevent TSE infection…”

http://www.jneurosci.org/content/27/36/9537.full

The marijuana component cannabidiol inhibits beta-amyloid-induced tau protein hyperphosphorylation through Wnt/beta-catenin pathway rescue in PC12 cells.

“Alzheimer’s disease (AD) is the most common age-related neurodegenerative disorder. A massive accumulation of beta-amyloid (Abeta) peptide aggregates has been proposed as pivotal event in AD. Abeta-induced toxicity is accompanied by a variegated combination of events including oxidative stress… Cannabidiol, a non-psychoactive marijuana component, has been recently proposed as an antioxidant neuroprotective agent in neurodegenerative diseases. Moreover, it has been shown to rescue PC12 cells from toxicity induced by Abeta peptide. Here, we report that cannabidiol inhibits hyperphosphorylation of tau protein in Abeta-stimulated PC12 neuronal cells, which is one of the most representative hallmarks in AD… These results provide new molecular insight regarding the neuroprotective effect of cannabidiol and suggest its possible role in the pharmacological management of AD, especially in view of its low toxicity in humans.”

http://www.ncbi.nlm.nih.gov/pubmed/16389547

 

Cannabidiol inhibits inducible nitric oxide synthase protein expression and nitric oxide production in beta-amyloid stimulated PC12 neurons through p38 MAP kinase and NF-kappaB involvement.

“In view of the pro-inflammatory scenario observed in Alzheimer’s disease, in the recent years anti-inflammatory drugs have been proposed as potential therapeutic agents. We have previously shown that cannabidiol, the main non-psychotropic component from Cannabis sativa, possess a variegate combination of anti-oxidant and anti-apoptotic effects that protect PC12 cells from Abeta toxicity. In parallel, cannabidiol has been described to have anti-inflammatory properties in acute models of inflammation …

The here reported data increases our knowledge about the possible neuroprotective mechanism of cannabidiol, highlighting the importance of this compound to inhibit beta-amyloid induced neurodegeneration, in view of its low toxicity in humans.”

http://www.ncbi.nlm.nih.gov/pubmed/16490313

The endocannabinoid, anandamide, augments Notch-1 signaling in cultured cortical neurons exposed to amyloid-β and in the cortex of aged rats.

“Aberrant Notch signaling has recently emerged as a possible mechanism for the altered neurogenesis, cognitive impairment, and learning and memory deficits associated with Alzheimer disease (AD). Recently, targeting the endocannabinoid system in models of AD has emerged as a potential approach to slow the progression of the disease process. Although studies have identified neuroprotective roles for endocannabinoids, there is a paucity of information on modulation of the pro-survival Notch pathway by endocannabinoids. In this study the influence of the endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol, on the Notch-1 pathway and on its endogenous regulators were investigated in an in vitro model of AD. We report that AEA up-regulates Notch-1 signaling in cultured neurons… In summary, AEA has the proclivity to enhance Notch-1 signaling in an in vitro model of AD, which may have relevance for restoring neurogenesis and cognition in AD.”

http://www.ncbi.nlm.nih.gov/pubmed/22891244