Cannabinoids for the Treatment of Schizophrenia: An Overview.

“Δ9-tetrahydrocannabinol and its analogues are found to have particular application in psychiatry because of their antipsychotic properties suggesting a therapeutic use as neuroleptic agents in limiting psychotic diseases.

These treatments should not only aim to alleviate specific symptoms but also attempt to delay/arrest disease progression.

In the present review, we reported recent studies supporting the view that the cannabinoid signalling system is a key modulatory element in the activity of the striatum and temporal cortex that has been traditionally associated with psychosis and schizophrenia.

This idea is supported by different anatomical, electrophysiological, pharmacological and biochemical data.

Furthermore, these studies indicate that the cannabinoid system is impaired in different psychotic disorders, supporting the idea of developing novel pharmacotherapies with compounds that selectively target specific elements of the cannabinoid system.”

http://www.ncbi.nlm.nih.gov/pubmed/26845552

http://www.thctotalhealthcare.com/category/schizophrenia/

Metabolomics of Δ9-tetrahydrocannabinol: implications in toxicity.

“Cannabis sativa is the most commonly used recreational drug, Δ9-tetrahydrocannabinol (Δ9-THC) being the main addictive compound.

Biotransformation of cannabinoids is an important field of xenobiochemistry and toxicology and the study of the metabolism can lead to the discovery of new compounds, unknown metabolites with unique structures and new therapeutic effects.

The pharmacokinetics of Δ9-THC is dependent on multiple factors such as physical/chemical form, route of administration, genetics, and concurrent consumption of alcohol.

This review aims to discuss metabolomics of Δ9-THC, namely by presenting all known metabolites of Δ9-THC described both in vitro and in vivo, and their roles in the Δ9-THC-mediated toxic effects.

Since medicinal use is increasing, metabolomics of Δ9-THC will also be discussed in order to uncover potential active metabolites that can be made available for this purpose.”

http://www.ncbi.nlm.nih.gov/pubmed/26828228

Characterization of a novel adult murine immortalized microglial cell line and its activation by amyloid-beta.

“Alzheimer’s disease is associated with amyloid-beta (Aβ)-induced microglia activation.

This pro-inflammatory response promotes neuronal damage, and therapies are sought to limit microglial activation.

The objective of this study was to characterize Aβ-induced activation of IMG cells, and here, we demonstrate the ability of cannabinoids to significantly reduce this inflammatory response.

Aβ-induced activation of IMG cells was suppressed by delta-9-tetrahydrocannabinol and the CB2-selective agonist JWH-015 in a time- and concentration-dependent manner.

IMG cells recapitulate key features of microglial cell activation. As an example of their potential pharmacological use, cannabinoids were shown to reduce activation of Aβ-induced iNOS gene expression.”

http://www.ncbi.nlm.nih.gov/pubmed/26819091

CBD-enriched medical cannabis for intractable pediatric epilepsy: The current Israeli experience.

“To describe the experience of five Israeli pediatric epilepsy clinics treating children and adolescents diagnosed as having intractable epilepsy with a regimen of medical cannabis oil.

A retrospective study describing the effect of cannabidiol (CBD)-enriched medical cannabis on children with epilepsy.

The cohort included 74 patients (age range 1-18 years) with intractable epilepsy resistant to >7 antiepileptic drugs. Forty-nine (66%) also failed a ketogenic diet, vagal nerve stimulator implantation, or both.

They all started medical cannabis oil treatment between 2-11/2014 and were treated for at least 3 months (average 6 months).

The selected formula contained CBD and tetrahydrocannabinol at a ratio of 20:1 dissolved in olive oil. The CBD dose ranged from 1 to 20mg/kg/d. Seizure frequency was assessed by parental report during clinical visits.

CBD treatment yielded a significant positive effect on seizure load.

Most of the children (66/74, 89%) reported reduction in seizure frequency: 13 (18%) reported 75-100% reduction, 25 (34%) reported 50-75% reduction, 9 (12%) reported 25-50% reduction, and 19 (26%) reported <25% reduction. Five (7%) patients reported aggravation of seizures which led to CBD withdrawal.

In addition, we observed improvement in behavior and alertness, language, communication, motor skills and sleep. Adverse reactions included somnolence, fatigue, gastrointestinal disturbances and irritability leading to withdrawal of cannabis use in 5 patients.

CONCLUSIONS:

The results of this multicenter study on CBD treatment for intractable epilepsy in a population of children and adolescents are highly promising. Further prospective, well-designed clinical trials using enriched CBD medical cannabis are warranted.”

http://www.ncbi.nlm.nih.gov/pubmed/26800377

http://www.thctotalhealthcare.com/category/epilepsy-2/

Involvement of the orexin/hypocretin system in the pharmacological effects induced by Δ9-tetrahydrocannabinol.

“Anatomical, biochemical and pharmacological evidences suggest the existence of a cross-talk between the orexinergic and the endocannabinoid system.

The hypothermia, supraspinal antinociception and anxiolytic-like effects induced by THC were modulated by orexins through OX2 signalling.

OX1 did not seem to be involved in these THC responses. No differences in CB1 receptor levels were found between wild-type and PPO KO mice…

Our results provide new findings to further clarify the interaction between orexins and cannabinoids. OX1 and OX2 are differently implicated in the pharmacological effects of cannabinoids.”

http://www.ncbi.nlm.nih.gov/pubmed/26799708

The selective monoacylglycerol lipase inhibitor MJN110 produces opioid sparing effects in a mouse neuropathic pain model.

“Serious clinical liabilities associated with the prescription of opiates for pain control include constipation, respiratory depression, pruritus, tolerance, abuse, and addiction.

A recognized strategy to circumvent these side effects is to combine opioids with other antinociceptive agents.

The combination of opiates with the primary active constituent of cannabis, Δ9-tetrahydrocannabinol, produces enhanced antinociceptive actions, suggesting that cannabinoid receptor agonists can be opioid sparing…

Here, we tested whether elevating the endogenous cannabinoid 2-arachidonylglycerol (2-AG) through the inhibition of its primary hydrolytic enzyme monoacylglycerol lipase (MAGL), will produce opioid sparing effects…

These findings, taken together, suggest that MAGL inhibition produces opiate sparing events with diminished tolerance, constipation, and cannabimemetic side effects.”

http://www.ncbi.nlm.nih.gov/pubmed/26791602

http://www.thctotalhealthcare.com/category/pain-2/

The Pharmacological Basis of Cannabis Therapy for Epilepsy.

“Recently, cannabis has been suggested as a potential alternative therapy for refractory epilepsy, which affects 30% of epilepsy patients including children who do not respond to current medications.

There is a large unmet medical need for new antiepileptics for refractory epilepsy and conditions associated with refractory seizures that would not interfere with normal function.

The two chief cannabinoids are delta-9-tetrahyrdrocannabinol, the major psychoactive component of marijuana, and cannabidiol (CBD), the major non-psychoactive component of marijuana.

There are claims of clinical efficacy of CBD-predominant cannabis or medical marijuana for epilepsy, mostly from limited studies, surveys or case reports.

However, the mechanisms underlying the antiepileptic efficacy of cannabis remain unclear. This article highlights the pharmacological basis of cannabis therapy, with an emphasis on the endocannabinoid mechanisms underlying the emerging neurotherapeutics of CBD in epilepsy.

CBD is anticonvulsant, but it has a low affinity for the cannabinoid CB1 and CB2 receptors; therefore the exact mechanism by which it affects seizures remains poorly understood.

A rigorous clinical evaluation of pharmaceutical CBD products is needed to establish the safety and efficacy for the treatment of epilepsy.

Identification of mechanisms underlying the anticonvulsant efficacy of CBD is additionally critical to identify other potential treatment options.”

http://www.ncbi.nlm.nih.gov/pubmed/26787773

http://jpet.aspetjournals.org/content/early/2016/01/19/jpet.115.230151.long

http://www.thctotalhealthcare.com/category/epilepsy-2/

Evaluating Sativex® in Neuropathic Pain Management: A Clinical and Neurophysiological Assessment in Multiple Sclerosis.

“Pain is a common symptom of MS, affecting up to 70% of patients.

Pain treatment is often unsatisfactory, although emerging drugs (including cannabinoids) are giving encouraging results.

 The aim of our study was to better investigate the role of Sativex® in improving pain in multiple sclerosis (MS) patients by means of either clinical or neurophysiological assessment.

 One month of drug administration in MS patients with neuropathic pain successfully reduced pain rating and improved quality of life.
Our data suggest that Sativex may be effective in improving MS-related neuropathic pain, maybe through its action on specific cortical pathways.”

Safety and Efficacy of Medical Cannabis Oil for Behavioral and Psychological Symptoms of Dementia: An-Open Label, Add-On, Pilot Study.

“Tetrahydrocannabinol (THC) is a potential treatment for Alzheimer’s disease (AD).

OBJECTIVE:

To measure efficacy and safety of medical cannabis oil (MCO) containing THC as an add-on to pharmacotherapy, in relieving behavioral and psychological symptoms of dementia (BPSD).

Eleven AD patients were recruited to an open label, 4 weeks, prospective trial.

RESULTS:

Ten patients completed the trial. Significant reduction in CGI severity score and NPI score were recorded. NPI domains of significant decrease were: Delusions, agitation/aggression, irritability, apathy, and sleep and caregiver distress.

CONCLUSION:

Adding MCO to AD patients’ pharmacotherapy is safe and a promising treatment option.”

http://www.ncbi.nlm.nih.gov/pubmed/26757043

http://www.thctotalhealthcare.com/category/alzheimers-disease-ad/

A cost-effectiveness model for the use of a cannabis-derived oromucosal spray for the treatment of spasticity in multiple sclerosis.

“Severity of spasticity in multiple sclerosis (MS) directly correlates with the level and cost of care required.

This study assessed whether a tetrahydrocannabinol/cannabidiol (THC/CBD) oromucosal spray for treatment of moderate-severe MS spasticity is a cost-effective use of healthcare resources in Wales.

The THC/CBD spray was found to be cost-effective for the treatment of spasticity in MS, and dominant, if home carer costs were included.

Use of THC/CBD has the potential to generate cost savings by significantly improving the symptoms of moderate to severe MS spasticity”

http://www.ncbi.nlm.nih.gov/pubmed/26750641

http://www.thctotalhealthcare.com/category/multiple-sclerosis-ms/