Cannabinoids prevent the development of behavioral and endocrine alterations in a rat model of intense stress.

“Cannabinoids have recently emerged as a possible treatment of stress- and anxiety-related disorders such as post-traumatic stress disorder (PTSD).

Here, we examined whether cannabinoid receptor activation could prevent the effects of traumatic stress on the development of behavioral and neuroendocrine measures in a rat model of PTSD…

…cannabinoids could serve as a pharmacological treatment of stress- and trauma-related disorders.

…the results extend previous findings to another stress model and to a post-trauma treatment configuration that are more relevant to clinical context and add to the growing body of data pointing to a therapeutic potential of cannabinoids for treatment of PTSD.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3242307/

http://www.thctotalhealthcare.com/category/post-traumatic-stress-disorder-ptsd/

Cannabinoid receptor activation prevents the effects of chronic mild stress on emotional learning and LTP in a rat model of depression.

“The endocannabinoid (eCB) system has recently emerged as a promising therapeutic target for the treatment of stress-related emotional disorders.

Recent data suggest that the eCB system could represent a new therapeutic target for the treatment of depression.

The findings suggest that enhancing cannabinoid signaling could represent a novel approach to the treatment of cognitive deficits that accompany stress-related depression.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3924526/

http://www.thctotalhealthcare.com/category/depression-2/

Neural correlates of cannabidiol and Δ9-tetrahydrocannabinol interactions in mice: implications for medical cannabis.

“It has been proposed that medicinal strains of cannabis and therapeutic preparations would be safer with a more balanced concentration ratio of Δ9-tetrahydrocannabinol (THC) to cannabidiol (CBD), as CBD reduces the adverse psychotropic effects of THC.

The aim of this study is to investigate whether CBD modulates THC-induced functional effects and c-Fos expression in a 1:1 dose ratio that approximates therapeutic strains of cannabis and nabiximols.

These data re-affirm that CBD modulates the pharmacological actions of THC and provide information regarding brain regions involved in the interaction between CBD and THC.”

http://www.ncbi.nlm.nih.gov/pubmed/26377899

[Cannabis – therapy for the future?]

“Despite all the progress achieved in the treatment of chronic gastrointestinal diseases, in some patients the treatment does not reach long-term optimum effectiveness. Therefore a number of patients have turned to complementary and alternative medicine (CAM).

Of the different types of CAM patients with GIT diseases tend to prefer in particular homeopathy, acupuncture and not least phytotherapy, where therapeutic use of cannabis may also be included.

The pathophysiological basis of therapeutic effect of curative cannabis has not been fully clarified so far.

Many scientists in many fields of medicine and pharmacology have been engaged in the study of effects of cannabinoids on the body since the beginning of the 20th century with the interest significantly increasing in the 1980s.

The discovery of CB receptors (1988) and endogenous molecules which activate these receptors (1992) led to the discovery of the endocannabinoid system.

Pharmacological modulation of the endogenous cannabinoid system offers new therapeutic possibilities of treatment of many illnesses and symptoms including the GIT disorders, including of nausea, vomiting, cachexia, IBS, Crohns disease and some other disorders.

Cannabinoids are attractive due to their therapeutic potential – they affect a lot of symptoms with minimum side effects.

Experience of patients with GIT disorders show that the use of cannabis is effective and helps in cases where the standard therapy fails.”

http://www.ncbi.nlm.nih.gov/pubmed/26375695

Potential Therapeutic Value of a Novel FAAH Inhibitor for the Treatment of Anxiety.

“Anxiety disorders are among the most prevalent psychiatric diseases with high personal costs and a remarkable socio-economic burden. However, current treatment of anxiety is far from satisfactory.

Novel pharmacological targets have emerged in the recent years, and attention has focused on the endocannabinoid (eCB) system, given the increasing evidence that supports its central role in emotion, coping with stress and anxiety.

In the management of anxiety disorders, drug development strategies have left apart the direct activation of type-1 cannabinoid receptors to indirectly enhance eCB signalling through the inhibition of eCB deactivation, that is, the inhibition of the fatty acid amide hydrolase (FAAH) enzyme.

In the present study, we provide evidence for the anxiolytic-like properties of a novel, potent and selective reversible inhibitor of FAAH, ST4070, orally administered to rodents.

Altogether, ST4070 offers a promising anxiolytic-like profile in preclinical studies, although further studies are warranted to clearly demonstrate its efficacy in the clinic management of anxiety disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26360704

Endocannabinoid regulation of amyloid-induced neuroinflammation.

“The modulation of endocannabinoid (EC) levels and the activation of cannabinoid receptors are seen as promising therapeutic strategies in a variety of diseases, including Alzheimer’s disease (AD).

These data reinforce the notion of a role for the EC system in neuroinflammation and open new perspectives on the relevance of modulating EC levels in the inflammed brain.”

http://www.ncbi.nlm.nih.gov/pubmed/26362942

Tetrahydrocannabivarin (THCv) reduces Default Mode Network and increases Executive Control Network Resting State Functional Connectivity in Healthy Volunteers.

“The cannabinoid CB1 Neutral Antagonist Tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity but without the depressogenic side-effects of inverse antagonists such as Rimonabant.

Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the Default Mode network and increases connectivity in the Cognitive Control network and Dorsal Visual Stream network.

This effect profile suggests possible therapeutic activity of THCv for obesity where functional connectivity has been found to be altered in these regions.”

http://www.ncbi.nlm.nih.gov/pubmed/26362774

Cannabinoid Ligands and Alcohol Addiction: A Promising Therapeutic Tool or a Humbug?

“The vast therapeutic potential of cannabinoids of both synthetic and plant-derived origins currently makes these compounds the focus of a growing interest. Although cannabinoids are still illicit drugs, their possible clinical usefulness, including treatment of acute or neuropathic pain, have been suggested by several studies.

In addition, some observations indicate that cannabinoid receptor antagonists may be useful for the treatment of alcohol dependence and addiction, which is a major health concern worldwide.

While the synergism between alcohol and cannabinoid agonists (in various forms) creates undesirable side effects when the two are consumed together, the administration of CB1 antagonists leads to a significant reduction in alcohol consumption.

Furthermore, cannabinoid antagonists also mitigate alcohol withdrawal symptoms.

Herein, we present an overview of studies focusing on the effects of cannabinoid ligands (agonists and antagonists) during acute or chronic consumption of ethanol.”

http://www.ncbi.nlm.nih.gov/pubmed/26353844

Cannabinoid-based drugs targeting CB1 and TRPV1, the sympathetic nervous system, and arthritis.

“Chronic inflammation in rheumatoid arthritis (RA) is accompanied by activation of the sympathetic nervous system, which can support the immune system to perpetuate inflammation. Several animal models of arthritis already demonstrated a profound influence of adrenergic signaling on the course of RA.

Peripheral norepinephrine release from sympathetic terminals is controlled by cannabinoid receptor type 1 (CB1), which is activated by two major endocannabinoids (ECs), arachidonylethanolamine (anandamide) and 2-arachidonylglycerol.

These ECs also modulate function of transient receptor potential channels (TRPs) located on sensory nerve fibers, which are abundant in arthritic synovial tissue. TRPs not only induce the sensation of pain but also support inflammation via secretion of pro-inflammatory neuropeptides.

In addition, many cell types in synovial tissue express CB1 and TRPs.

In this review, we focus on CB1 and transient receptor potential vanilloid 1 (TRPV1)-mediated effects on RA since most anti-inflammatory mechanisms induced by cannabinoids are attributed to cannabinoid receptor type 2 (CB2) activation.

We demonstrate how CB1 agonism or antagonism can modulate arthritic disease.

The concept of functional antagonism with continuous CB1 activation is discussed.

Since fatty acid amide hydrolase (FAAH) is a major EC-degrading enzyme, the therapeutic possibility of FAAH inhibition is studied.

Finally, the therapeutic potential of ECs is examined since they interact with cannabinoid receptors and TRPs but do not produce central side effects.”

http://www.ncbi.nlm.nih.gov/pubmed/26343051

Cannabidiol as a Potential Treatment for Anxiety Disorders.

“Cannabidiol (CBD), a Cannabis sativa constituent, is a pharmacologically broad-spectrum drug that in recent years has drawn increasing interest as a treatment for a range of neuropsychiatric disorders.

The purpose of the current review is to determine CBD’s potential as a treatment for anxiety-related disorders, by assessing evidence from preclinical, human experimental, clinical, and epidemiological studies.

We found that existing preclinical evidence strongly supports CBD as a treatment for generalized anxiety disorder, panic disorder, social anxiety disorder, obsessive-compulsive disorder, and post-traumatic stress disorder when administered acutely; however, few studies have investigated chronic CBD dosing.

Likewise, evidence from human studies supports an anxiolytic role of CBD, but is currently limited to acute dosing, also with few studies in clinical populations.

Overall, current evidence indicates CBD has considerable potential as a treatment for multiple anxiety disorders, with need for further study of chronic and therapeutic effects in relevant clinical populations.”

http://www.ncbi.nlm.nih.gov/pubmed/26341731