Peripheral interactions between cannabinoid and opioid receptor agonists in a model of inflammatory mechanical hyperalgesia.

“Activation of opioid and cannabinoid receptors expressed in nociceptors induces effective antihyperalgesia.

In this study, we examined whether combinations of opioid and cannabinoid receptor agonists directed at the injured site would enhance therapeutic effectiveness.

Our findings showed that MOR and CB1 agonists directed at the inflamed site effectively attenuate mechanical hyperalgesia when administered individually, but exert opposing effects when administered together.

The antagonistic interactions between the two classes of drugs at the inflamed site suggest distinct mechanisms unique to peripheral nociceptors or inflamed tissue, and therefore require further studies to investigate whether the therapeutic utility of the combined drug treatments in chronic pain conditions can be optimized.”

http://www.ncbi.nlm.nih.gov/pubmed/27450703

Cannabinoid Modulation of Cutaneous Aδ Nociceptors During Inflammation

Logo of jn

“Previous studies have demonstrated that locally administered cannabinoids attenuate allodynia and hyperalgesia through activation of peripheral cannabinoid receptors (CB1 and CB2).

These results suggest that attenuation of mechanically evoked responses of Aδ nociceptors contributes to the behavioral antinociception produced by activation of peripheral CB1 receptors during inflammation.

Several studies have demonstrated that locally administered cannabinoids produce antinociception in animal models of both acute and persistent pain through peripheral mechanisms.

Taken together, our data suggest that peripherally acting cannabinoids could be a potential therapeutic treatment for chronic inflammatory pain.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2585399/

 

Cannabimimetic Drugs: Recent Patents in Central Nervous System Disorders.

“Agents acting via cannabinoid receptors have been widely developed; starting from the chemical structure of phytocannabinoids isolated from cannabis sativa plant, specific and selective compounds of these receptors have been produced ranging from partial to full agonists and /or antagonists endowed with different potency.

The enhanced interest on developing such classes of drugs is due to the beneficial properties widely reported by both anecdotal reports and scientific studies describing the potential medicinal use of cannabinoids and their derivatives in numerous pathological conditions in both in vitro and in vivo models.

The use of these drugs has been found to be of benefit in a wide number of neurological and neuropsychiatric disorders, and in many other diseases ranging from cancer, atherosclerosis, stroke, hypertension, inflammatory related disorders, and autoimmune diseases, just to mention some.

In particular, being the cannabinoid CB1 receptor a central receptor expressed by neurons of the central nervous system, the attention for the treatment of neurological diseases has been mainly focused on compounds acting via this receptor, however some of these compounds has been showed to act by alternative pathways in some cases unrelated to CB1 receptors.

Nonetheless, endocannabinoids are potent regulators of the synaptic function in the central nervous system and their levels are modulated in neurological diseases.

In this study, we focused on endocannabinoid mechanism of action in neuronal signaling and on cannabimimetic drug potential application in neurological disorders.

Finally, novel patents on cannabis-based drugs with applicability in central nervous system disorders are highlighted, to suggest future potential therapeutic utility of derivatives of this ancient plant.”

http://www.ncbi.nlm.nih.gov/pubmed/27334611

[MEDICAL CANNABIS].

“The cannabis plant has been known to humanity for centuries as a remedy for pain, diarrhea and inflammation.

Current research is inspecting the use of cannabis for many diseases, including multiple sclerosis, epilepsy, dystonia, and chronic pain.

In inflammatory conditions cannabinoids improve pain in rheumatoid arthritis and: pain and diarrhea in Crohn’s disease.

Despite their therapeutic potential, cannabinoids are not free of side effects including psychosis, anxiety, paranoia, dependence and abuse.

Controlled clinical studies investigating the therapeutic potential of cannabis are few and small, whereas pressure for expanding cannabis use is increasing.

Currently, as long as cannabis is classified as an illicit drug and until further controlled studies are performed, the use of medical cannabis should be limited to patients who failed conventional better established treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/27215115

The synthetic cannabinoid WIN55,212-2 mesylate decreases the production of inflammatory mediators in rheumatoid arthritis synovial fibroblasts by activating CB2, TRPV1, TRPA1 and yet unidentified receptor targets

Logo of jinflamm

“Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by joint inflammation and cartilage destruction.

In this study we assessed the ability of WIN to modulate cytokine and MMP-3 production in SFs over a wide concentration range and identified specific receptor targets that mediate the effects of this synthetic cannabinoid.

The synthetic cannabinoid WIN in low concentrations exhibits anti-inflammatory effects in synovial fibroblasts independent of CB1 and CB2 while CB2 and yet unidentified receptor targets are responsible for WIN effects in micromolar concentrations.

Our results indicate a TRPV1/TRPA1 dependent mechanism of SF regulation that might be coupled to cellular energy status and calcium content.

In this report we demonstrated anti-inflammatory effects of the synthetic cannabinoid WIN in low and high concentrations.

Furthermore, this study demonstrated anti-inflammatory effects via modulation of TRP channels by WIN. Together, inactivation of TRPs and activation of cannabinoid receptors might also reduce the sensation of pain, which further underlines the potential of WIN in the treatment of chronic inflammation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858820/

Interactions between cannabinoid receptor agonists and mu opioid receptor agonists in rhesus monkeys discriminating fentanyl.

“Cannabinoid receptor agonists such as delta-9-tetrahydrocannabinol (Δ9-THC) enhance some (antinociceptive) but not other (positive reinforcing) effects of mu opioid receptor agonists, suggesting that cannabinoids might be combined with opioids to treat pain without increasing, and possibly decreasing, abuse.

These data indicate that the discriminative stimulus effects of nalbuphine are more sensitive to attenuation by cannabinoids than those of fentanyl. That the discriminative stimulus effects of some opioids are more susceptible to modification by drugs from other classes has implications for developing maximally effective therapeutic drug mixtures with reduced abuse liability.”

http://www.ncbi.nlm.nih.gov/pubmed/27184925

Cannabis in Pain Treatment: Clinical and Research Considerations

“Cannabinoids show promise as therapeutic agents, particularly as analgesics, but their development and clinical use has been complicated by recognition of their botanical source, cannabis, as a substance of misuse.

Although research into endogenous cannabinoid systems and potential cannabinoid pharmaceuticals is slowly increasing, there has been intense societal interest in making herbal (plant) cannabis available for medicinal use; 23 U.S. States and all Canadian provinces currently permit use in some clinical contexts.

Whether or not individual professionals support the clinical use of herbal cannabis, all clinicians will encounter patients who elect to use it and therefore need to be prepared to advise them on cannabis-related clinical issues despite limited evidence to guide care.

Expanded research on cannabis is needed to better determine the individual and public health effects of increasing use of herbal cannabis and to advance understanding of the pharmaceutical potential of cannabinoids as medications.

This article reviews clinical, research, and policy issues related to herbal cannabis to support clinicians in thoughtfully advising and caring for patients who use cannabis, and it examines obstacles and opportunities to expand research on the health effects of herbal cannabis and cannabinoids.

Perspective

Herbal cannabis is increasingly available for clinical use in the United States despite continuing controversies over its efficacy and safety. This article explores important considerations in the use of plant Cannabis to better prepare clinicians to care for patients who use it, and identifies needed directions for research.”

http://www.jpain.org/article/S1526-5900%2816%2900543-5/fulltext

“APS Issues New Guidance on Medical Marijuana for Pain”  http://www.medscape.com/viewarticle/863396

Pain, Cannabis Species, and Cannabis Use Disorders.

“The purpose of this study was to examine whether individuals who used medical cannabis for chronic pain were at increased risk for cannabis use problems compared with individuals who used medical cannabis for other reasons (e.g., anxiety, insomnia, and muscle spasms).

An additional aim was to determine whether individuals who used cannabis for chronic pain, as well as those who reported greater within-group pain levels, demonstrated a species preference (i.e., sativa, indica, hybrids) and the extent to which species preference was associated with cannabis use problems.

RESULTS:

Individuals who used cannabis to manage chronic pain experienced fewer cannabis use problems than those who did not use it for pain; among those who used it for pain, the average pain level in the past week was not associated with cannabis use problems. Furthermore, individuals who used cannabis for chronic pain were more likely to use indica over sativa. Preference for indica was associated with fewer cannabis use problems than preference for hybrid species.

CONCLUSIONS:

Individuals who use cannabis to manage chronic pain may be at a lower risk for cannabis use problems, relative to individuals who use it for other indications, potentially as a function of their species preference.”

http://www.ncbi.nlm.nih.gov/pubmed/27172585

ENDOCANNABINOID SYSTEM: A multi-facet therapeutic target.

Image result for Curr Clin Pharmacol.

“Cannabis sativa is also popularly known as marijuana. It is being cultivated and used by man for recreational and medicinal purposes from many centuries.

Study of cannabinoids was at bay for very long time and its therapeutic value could not be adequately harnessed due to its legal status as proscribed drug in most of the countries.

The research of drugs acting on endocannabinoid system has seen many ups and down in recent past. Presently, it is known that endocannabinoids has role in pathology of many disorders and they also serve “protective role” in many medical conditions.

Several diseases like emesis, pain, inflammation, multiple sclerosis, anorexia, epilepsy, glaucoma, schizophrenia, cardiovascular disorders, cancer, obesity, metabolic syndrome related diseases, Parkinson’s disease, Huntington’s disease, Alzheimer’s disease and Tourette’s syndrome could possibly be treated by drugs modulating endocannabinoid system.

Presently, cannabinoid receptor agonists like nabilone and dronabinol are used for reducing the chemotherapy induced vomiting. Sativex (cannabidiol and THC combination) is approved in the UK, Spain and New Zealand to treat spasticity due to multiple sclerosis. In US it is under investigation for cancer pain, another drug Epidiolex (cannabidiol) is also under investigation in US for childhood seizures. Rimonabant, CB1 receptor antagonist appeared as a promising anti-obesity drug during clinical trials but it also exhibited remarkable psychiatric side effect profile. Due to which the US Food and Drug Administration did not approve Rimonabant in US. It sale was also suspended across the EU in 2008.

Recent discontinuation of clinical trial related to FAAH inhibitor due to occurrence of serious adverse events in the participating subjects could be discouraging for the research fraternity. Despite of some mishaps in clinical trials related to drugs acting on endocannabinoid system, still lot of research is being carried out to explore and establish the therapeutic targets for both cannabinoid receptor agonists and antagonists.

One challenge is to develop drugs that target only cannabinoid receptors in a particular tissue and another is to invent drugs that acts selectively on cannabinoid receptors located outside the blood brain barrier. Besides this, development of the suitable dosage forms with maximum efficacy and minimum adverse effects is also warranted.

Another angle to be introspected for therapeutic abilities of this group of drugs is non-CB1 and non-CB2 receptor targets for cannabinoids.

In order to successfully exploit the therapeutic potential of endocannabinoid system, it is imperative to further characterize the endocannabinoid system in terms of identification of the exact cellular location of cannabinoid receptors and their role as “protective” and “disease inducing substance”, time-dependent changes in the expression of cannabinoid receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/27086601

Synthesis and pharmacological evaluation of new biphenylic derivatives as CB2 receptor ligands.

“Targeting type-2 cannabinoid receptor (CB2) is considered a feasible strategy to develop new drugs for the treatment of diseases like neuropathic pain, chronic inflammation, neurodegenerative disorders and cancer.

Such drugs are devoid of the undesired central side effects that are typically mediated by the CB1 receptor.

In this work we synthesized 18 biphenylic carboxamides as new CB2-selective ligands and evaluated their pharmacological profiles. The functional activity of these compounds is strongly influenced by the nature of the substituent at position 4′ and 5 of the biphenyl scaffold.

Position 5 seems to be responsible for the agonist or inverse agonist behaviour independently of the substituent in position 4′, with the exception of the methoxyl group which transforms both full agonists and inverse agonists into neutral antagonists.

This study provides a novel complete toolbox of CB2 functional modulators that derive from the same chemical scaffold. Such probes may be useful to investigate the biological role of CB2 receptors in cellular assays.”

http://www.ncbi.nlm.nih.gov/pubmed/27078864