New Insights of Uterine Leiomyoma Pathogenesis: Endocannabinoid System.

 

“The aim of this study was to determine if components of the endocannabinoid system are modulated in uterine leiomyomas (fibroids). Components studied included cannabinoid receptors 1 (CB1) and 2 (CB2); the G protein-coupled receptor GPR55; transient potential vanilloid receptor 1 (TRPV1) and the endocannabinoid modulating enzymes N-acylphosphatidylethanolamine-specific phospholipase D (NAPE-PLD) and fatty acid amide hydrolase (FAAH), and their N-acylethanolamine (NAE) ligands: N-arachidonylethanolamine (AEA), N-oleoylethanolamine (OEA), and N-palmityolethanaolamine (PEA). MATERIAL AND METHODS Transcript levels of CB1, CB2, TRPV1, GPR55, NAPE-PLD, and FAAH were measured using RT-PCR and correlated with the tissue levels of the 3 NAEs in myometrial tissues. The tissues studied were: 1) fibroids, 2) myometrium adjacent/juxtaposed to the fibroid lesions, and 3) normal myometrium. Thirty-seven samples were processed for NAE measurements and 28 samples were used for RT-PCR analyses. RESULTS FAAH expression was significantly lower in fibroids, resulting in a NAPE-PLD: FAAH ratio that favors higher AEA levels in pre-menopausal tissues, whilst PEA levels were significantly lower, particularly in post-menopausal women, suggesting PEA protects against fibroid pathogenesis. The CB1: CB2 ratio was lower in fibroids, suggesting that loss of CB1 expression affects the fibroid cell phenotype. Significant correlations between reduced FAAH, CB1, and GPR55 expression and PEA in fibroids indicate that the loss of these endocannabinoid system components are biomarkers of leiomyomata. CONCLUSIONS Loss of expression of CB1, FAAH, GPR55, and PEA production are linked to the pathogenesis of uterine fibroids and further understanding of this might eventually lead to better disease indicators or the development of therapeutic potentials that might eventually be used in the management of uterine fibroids.”

https://www.ncbi.nlm.nih.gov/pubmed/30842391

https://basic.medscimonit.com/abstract/index/idArt/914019

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Effects of CB2 and TRPV1 receptors’ stimulation in pediatric acute T-lymphoblastic leukemia

Related image

“T-Acute Lymphoblastic Leukemia (T-ALL) is less frequent than B-ALL, but it has poorer outcome. For this reason new therapeutic approaches are needed to treat this malignancy.

The Endocannabinoid/Endovanilloid (EC/EV) system has been proposed as possible target to treat several malignancies, including lymphoblastic diseases. The EC/EV system is composed of two G-Protein Coupled Receptors (CB1 and CB2), the Transient Potential Vanilloid 1 (TRPV1) channel, their endogenous and exogenous ligands and enzymes. CB1 is expressed mainly in central nervous system while CB2 predominantly on immune and peripheral cells, therefore we chose to selectively stimulate CB2 and TRPV1.

We treated T-ALL lymphoblasts derived from 4 patients and Jurkat cells with a selective agonist at CB2 receptor: JWH-133 [100 nM] and an agonist at TRPV1 calcium channel: RTX [5 uM] at 6, 12 and 24 hours. We analyzed the effect on apoptosis and Cell Cycle Progression by a cytofluorimetric assays and evaluated the expression level of several target genes (Caspase 3, Bax, Bcl-2, AKT, ERK, PTEN, Notch-1, CDK2, p53) involved in cell survival and apoptosis, by Real-Time PCR and Western Blotting.

We observed a pro-apoptotic, anti-proliferative effect of these compounds in both primary lymphoblasts obtained from patients with T-ALL and in Jurkat cell line. Our results show that both CB2 stimulation and TRPV1 activation, can increase the apoptosis in vitro, interfere with cell cycle progression and reduce cell proliferation, indicating that a new therapeutic approach to T-cell ALL might be possible by modulating CB2 and TRPV1 receptors.”

http://www.oncotarget.com/index.php?journal=oncotarget&page=article&op=view&path%5B%5D=25052

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Marijuana compounds show promise in treatment of cardiac disease

Marijuana compounds show promise in treatment of cardiac disease

“A Nevada company is hoping to develop new medicines for heart failure using compounds in marijuana and a novel therapy identified by a University of Hawaiʻi at Mānoa researcher. Dr. Alexander Stokes, assistant research professor in the Department of Cell and Molecular Biology at the UH John A. Burns School of Medicine, obtained a U.S. patent for his novel therapy in 2015. The patent claims the cannabinoid receptor TRPV1 can be regulated therapeutically by plant-based cannabinoids.”  https://medicalxpress.com/news/2017-01-marijuana-compounds-treatment-cardiac-disease.html

“Marijuana compounds show promise in treatment of cardiac disease”  http://manoa.hawaii.edu/news/article.php?aId=8355

“Marijuana compounds show promise in treatment of cardiac disease”  http://www.hawaii.edu/news/2017/01/12/marijuana-compounds-show-promise-in-treatment-of-cardiac-disease/

 

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The endocannabinoid system as a target for novel anxiolytic drugs.

Image result for Neuroscience & Biobehavioral Reviews

“The endocannabinoid (eCB) system has attracted attention for its role in various behavioral and brain functions, and as a therapeutic target in neuropsychiatric disease states, including anxiety disorders and other conditions resulting from dysfunctional responses to stress. In this mini-review, we highlight components of the eCB system that offer potential ‘druggable’ targets for new anxiolytic medications, emphasizing some of the less well-discussed options. We discuss how selectively amplifying eCBs recruitment by interfering with eCB-degradation, via fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL), has been linked to reductions in anxiety-like behaviors in rodents and variation in human anxiety symptoms. We also discuss a non-canonical route to regulate eCB degradation that involves interfering with cyclooxygenase-2 (COX-2). Next, we discuss approaches to targeting eCB receptor-signaling in ways that do not involve the cannabinoid receptor subtype 1 (CB1R); by targeting the CB2R subtype and the transient receptor potential vanilloid type 1 (TRPV1). Finally, we review evidence that cannabidiol (CBD), while representing a less specific pharmacological approach, may be another way to modulate eCBs and interacting neurotransmitter systems to alleviate anxiety. Taken together, these various approaches provide a range of plausible paths to developing novel compounds that could prove useful for treating trauma-related and anxiety disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/28434588

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Dual-Acting Compounds Targeting Endocannabinoid and Endovanilloid Systems-A Novel Treatment Option for Chronic Pain Management.

Image result for Front Pharmacol.

“Compared with acute pain that arises suddenly in response to a specific injury and is usually treatable, chronic pain persists over time, and is often resistant to medical treatment.

Because of the heterogeneity of chronic pain origins, satisfactory therapies for its treatment are lacking, leading to an urgent need for the development of new treatments.

The leading approach in drug design is selective compounds, though they are often less effective and require chronic dosing with many side effects.

Herein, we review novel approaches to drug design for the treatment of chronic pain represented by dual-acting compounds, which operate at more than one biological target.

A number of studies suggest the involvement of the cannabinoid and vanilloid receptors in pain.

Interestingly cannabinoid system is in interrelation with other systems that comprise lipid mediators: prostaglandins, produced by COX enzyme.

Therefore, in the present review, we summarize the role of dual-acting molecules (FAAH/TRPV1 and FAAH/COX-2 inhibitors) that interact with endocannabinoid and endovanillinoid systems and act as analgesics by elevating the endogenously produced endocannabinoids and dampening the production of pro-inflammatory prostaglandins.

The plasticity of the endocannabinoid system (ECS) and the ability of a single chemical entity to exert an activity on two receptor systems has been developed and extensively investigated.

Here, we review up-to-date pharmacological studies on compounds interacting with FAAH enzyme together with TRPV1 receptor or COX-2 enzyme respectively.

Multi-target pharmacological intervention for treating pain may lead to the development of original and efficient treatments.”

http://www.ncbi.nlm.nih.gov/pubmed/27582708

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Metabolism of endocannabinoids.

“Endocannabinoids belong to a group of ester, ether and amide derivatives of fatty acids, which are endogenous ligands of receptors CB1, CB2, TRPV1 and GPR55 that are included in the endocannabinoid system of the animal organism. The best known endocannabinoids are: N-arachidonylethanolamide called anandamide (AEA) and 2-arachidonoylglycerol (2-AG). They occur in all organisms, and their highest level is observed in the brain. In this review the mechanisms of synthesis and degradation of both AEA and 2-AG are shown. Endocannabinoids are synthesized from phospholipids (mainly phosphatidylethanolamine, phosphatidylcholine, and phosphatidylinositol) located in the cell membrane. As a result of arachidonic acid transfer from phosphatidylcholine to phosphatidylethanolamine, N-arachidonoyl phosphatidylethanolamine is formed, which is hydrolyzed to AEA by phospholipase D, C and A2. However, 2-AG is formed during the hydrolysis of phosphatidylinositol catalyzed mainly by DAGL. The primary role of endocannabinoids is the activation of cannabinoid receptors. Both AEA and 2-AG are primarily agonists of the CB1 receptor and to a lower degree CB2 and TRPV1r eceptors, but 2-AG has stronger affinity for these receptors. Through activation of receptors, endocannabinoids affect cellular metabolism and participate in the metabolic processes by receptor-independent pathways. Endocannabinoids which are not bound to the receptors are degraded. The main enzymes responsible for the hydrolysis of AEA and 2-AG are FAAH and MAGL, respectively. Apart from hydrolytic degradation, endocannabinoids may also be oxidized by cyclooxygenase-2, lipoxygenases, and cytochrome P450. It has been shown that the metabolites of both endocannabinoids also have biological significance.”

http://www.ncbi.nlm.nih.gov/pubmed/27516570

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Role of ionotropic cannabinoid receptors in peripheral antinociception and antihyperalgesia

Figure 1

“Although cannabinoids have been used for millennia for treating pain and other symptoms, their mechanisms of action remain obscure.

With the heralded identification of multiple G-protein-coupled receptors (GPCRs) mediating cannabinoid effects nearly two decades ago, the mystery of cannabinoid pharmacology was thought to be solved…

Despite the wealth of information on cannabinoid-induced peripheral antihyperalgesic and antinociceptive effects in many pain models, the molecular mechanism(s) for these actions remains unknown.

Although metabotropic cannabinoid receptors have important roles in many pharmacological actions of cannabinoids, recent studies have led to the recognition of a family of at least five ionotropic cannabinoid receptors (ICRs). The known ICRs are members of the family of transient receptor potential (TRP) channels and include TRPV1, TRPV2, TRPV4, TRPM8 and TRPA1.

Cannabinoid activation of ICRs can result in desensitization of the TRPA1 and TRPV1 channel activities, inhibition of nociceptors and antihyperalgesia and antinociception in certain pain models.

Thus, cannabinoids activate both metabotropic and ionotropic mechanisms to produce peripheral analgesic effects.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2863326/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid type 1 receptors and transient receptor potential vanilloid type 1 channels in fear and anxiety-two sides of one coin?

“The transient receptor potential vanilloid type 1 channel (TRPV1; originally vanilloid receptor VR1) is activated in peripheral terminals of nociceptive fibers by noxious heat, low pH, and natural products such as capsaicin, the pungent ingredient of red-hot chilli peppers. Evidence has been accumulating that TRPV1 is expressed also in the brain, where it seems to be involved in antinociception, locomotor control, and regulation of affective behaviors. This ion channel might be activated by arachidonoyl ethanolamide (anandamide), the endogenous agonist of the cannabinoid type 1 (CB(1)) receptor. However, while CB(1) activation leads to a decrease in intracellular calcium and attenuation of synaptic transmission, anandamide binding to TRPV1 results in elevated calcium levels and potentiated synaptic transmission. This suggests a tripartite regulatory system with antagonistic effects of CB(1) and TRPV1, which are tied together by the same endogenous ligand. Such a system may have important implication for the modulation of behavioral responses. The present commentary elaborates on this interplay between CB(1) receptors and TRPV1 channels in the context of fear- and anxiety-related behaviors.”

http://www.ncbi.nlm.nih.gov/pubmed/21906661

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous