Cannabinoids and Cancer

cancers-logo“Cannabinoids, active components of the plant Cannabis sativa, had been used for centuries in ancient medicine as therapeutic remedies for a variety of conditions, before becoming stigmatized due to their psychoactive effects.

In the second half of the 19th century, phyto-cannabinoids have been re-evaluated after the discovery of the chemical structure and isolation of different substances, and the subsequent development of cannabinoid-based drugs that have been FDA approved mainly to treat chemotherapy-induced nausea, insomnia and appetite, epilepsy, spasticity, and pain management.

Then, the elucidation of the endocannabinoid system, from the initial type 1 and type 2 (CB1 and CB2) cannabinoid receptors and their endogenous ligands (especially N-arachidonoylethanolamine, or anandamide, and 2-arachidonoylglycerol) to the emerging complexity of a wider system made up of additional putative receptors, ligands and enzymes, altogether termed endocannabinoidome, has further boosted research into the therapeutic potential of phyto-, endo- and even syntho-(synthetic) cannabinoids, cancer treatment included.”

https://pubmed.ncbi.nlm.nih.gov/34503268/

https://www.mdpi.com/2072-6694/13/17/4458/htm

Cannabinoids and Endocannabinoid System Changes in Intestinal Inflammation and Colorectal Cancer

cancers-logo“Despite the multiple preventive measures and treatment options, colorectal cancer holds a significant place in the world’s disease and mortality rates. The development of novel therapy is in critical need, and based on recent experimental data, cannabinoids could become excellent candidates. This review covered known experimental studies regarding the effects of cannabinoids on intestinal inflammation and colorectal cancer. In our opinion, because colorectal cancer is a heterogeneous disease with different genomic landscapes, the choice of cannabinoids for tumor prevention and treatment depends on the type of the disease, its etiology, driver mutations, and the expression levels of cannabinoid receptors. In this review, we describe the molecular changes of the endocannabinoid system in the pathologies of the large intestine, focusing on inflammation and cancer.”

https://pubmed.ncbi.nlm.nih.gov/34503163/

“In recent years, multiple preclinical studies have shown that changes in endocannabinoid system signaling may have various effects on intestinal inflammation and colorectal cancer. However, not all tumors can respond to cannabinoid therapy in the same manner. Given that colorectal cancer is a heterogeneous disease with different genomic landscapes, experiments with cannabinoids should involve different molecular subtypes, emerging mutations, and various stages of the disease. We hope that this review can help researchers form a comprehensive understanding of cannabinoid interactions in colorectal cancer and intestinal bowel diseases. We believe that selecting a particular experimental model based on the disease’s genetic landscape is a crucial step in the drug discovery, which eventually may tremendously benefit patient’s treatment outcomes and bring us one step closer to individualized medicine.”

https://www.mdpi.com/2072-6694/13/17/4353

The Endocannabinoid System: A Potential Target for the Treatment of Various Diseases

ijms-logo“The Endocannabinoid System (ECS) is primarily responsible for maintaining homeostasis, a balance in internal environment (temperature, mood, and immune system) and energy input and output in living, biological systems.

In addition to regulating physiological processes, the ECS directly influences anxiety, feeding behaviour/appetite, emotional behaviour, depression, nervous functions, neurogenesis, neuroprotection, reward, cognition, learning, memory, pain sensation, fertility, pregnancy, and pre-and post-natal development.

The ECS is also involved in several pathophysiological diseases such as cancer, cardiovascular diseases, and neurodegenerative diseases. In recent years, genetic and pharmacological manipulation of the ECS has gained significant interest in medicine, research, and drug discovery and development.

The distribution of the components of the ECS system throughout the body, and the physiological/pathophysiological role of the ECS-signalling pathways in many diseases, all offer promising opportunities for the development of novel cannabinergic, cannabimimetic, and cannabinoid-based therapeutic drugs that genetically or pharmacologically modulate the ECS via inhibition of metabolic pathways and/or agonism or antagonism of the receptors of the ECS. This modulation results in the differential expression/activity of the components of the ECS that may be beneficial in the treatment of a number of diseases.

This manuscript in-depth review will investigate the potential of the ECS in the treatment of various diseases, and to put forth the suggestion that many of these secondary metabolites of Cannabis sativa L. (hereafter referred to as “C. sativa L.” or “medical cannabis”), may also have potential as lead compounds in the development of cannabinoid-based pharmaceuticals for a variety of diseases.”

https://pubmed.ncbi.nlm.nih.gov/34502379/

https://www.mdpi.com/1422-0067/22/17/9472

 

“Cannabis sativa L. as a Natural Drug Meeting the Criteria of a Multitarget Approach to Treatment”

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7830475/

Cannabis and Inflammation in HIV: A Review of Human and Animal Studies

viruses-logo“Persistent inflammation occurs in people with HIV (PWH) and has many downstream adverse effects including myocardial infarction, neurocognitive impairment and death.

Because the proportion of people with HIV who use cannabis is high and cannabis may be anti-inflammatory, it is important to characterize the impact of cannabis use on inflammation specifically in PWH. We performed a selective, non-exhaustive review of the literature on the effects of cannabis on inflammation in PWH.

Research in this area suggests that cannabinoids are anti-inflammatory in the setting of HIV. Anti-inflammatory actions are mediated in many cases through effects on the endocannabinoid system (ECS) in the gut, and through stabilization of gut-blood barrier integrity. Cannabidiol may be particularly important as an anti-inflammatory cannabinoid. Cannabis may provide a beneficial intervention to reduce morbidity related to inflammation in PWH.”

https://pubmed.ncbi.nlm.nih.gov/34452386/

https://www.mdpi.com/1999-4915/13/8/1521

Systematic review of the impact of cannabinoids on neurobehavioral outcomes in preclinical models of traumatic and nontraumatic spinal cord injury

Spinal Cord“Objectives: To evaluate the impact of cannabinoids on neurobehavioral outcomes in preclinical models of nontraumatic and traumatic spinal cord injury (SCI), with the aim of determining suitability for clinical trials involving SCI patients.

Results: The search returned 8714 studies, 19 of which met our inclusion criteria. Sample sizes ranged from 23 to 390 animals. WIN 55,212-2 (n = 6) and AM 630 (n = 8) were the most used cannabinoid receptor agonist and antagonist respectively. Acute SCI models included traumatic injury (n = 16), ischaemia/reperfusion injury (n = 2), spinal cord cryoinjury (n = 1) and spinal cord ischaemia (n = 1). Assessment tools used assessed locomotor function, pain and anxiety. Cannabinoid receptor agonists resulted in statistically significant improvement in locomotor function in 9 out of 10 studies and pain outcomes in 6 out of 6 studies.

Conclusion: Modulation of the endo-cannabinoid system has demonstrated significant improvement in both pain and locomotor function in pre-clinical SCI models; however, the risk of bias is unclear in all studies. These results may help to contextualise future translational clinical trials investigating whether cannabinoids can improve pain and locomotor function in SCI patients.”

https://pubmed.ncbi.nlm.nih.gov/34392312/

“The results of these studies demonstrate that modulation of the endo-cannabinoid system has significant benefit for both pain and locomotor function across a range of pre-clinical models of acute spinal cord injury.”

https://www.nature.com/articles/s41393-021-00680-y

Localisation of Cannabinoid and Cannabinoid-Related Receptors in the Horse Ileum

Journal of Equine Veterinary Science“Colic is a common digestive disorder in horses and one of the most urgent problems in equine medicine. A growing body of literature has indicated that the activation of cannabinoid receptors could exert beneficial effects on gastrointestinal inflammation and visceral hypersensitivity.

The localisation of cannabinoid and cannabinoid-related receptors in the intestine of the horse has not yet been investigated. The purpose of this study was to immunohistochemically localise the cellular distribution of canonical and putative cannabinoid receptors in the ileum of healthy horses.

Distal ileum specimens were collected from six horses at the slaughterhouse. The tissues were fixed and processed to obtain cryosections which were used to investigate the immunoreactivity of canonical cannabinoid receptors 1 (CB1R) and 2 (CB2R), and three putative cannabinoid-related receptors: nuclear peroxisome proliferator-activated receptor-alpha (PPARα), transient receptor potential ankyrin 1 and serotonin 5-HT1a receptor (5-HT1aR).

Cannabinoid and cannabinoid-related receptors showed a wide distribution in the ileum of the horse.

The epithelial cells showed immunoreactivity for CB1R, CB2R and 5-HT1aR. Lamina propria inflammatory cells showed immunoreactivity for CB2R and 5-HT1aR. The enteric neurons showed immunoreactivity for CB1R, transient receptor potential ankyrin 1 and PPARα. The enteric glial cells showed immunoreactivity for CB1R and PPARα. The smooth muscle cells of the tunica muscularis and the blood vessels showed immunoreactivity for PPARα.

The present study represents a histological basis which could support additional studies regarding the distribution of cannabinoid receptors during gastrointestinal inflammatory diseases as well as studies assessing the effects of non-psychotic cannabis-derived molecules in horses for the management of intestinal diseases.”

https://pubmed.ncbi.nlm.nih.gov/34416995/

“Horses are often affected by gastrointestinal pathologies. Researchers are searching for new therapies for equine gastrointestinal diseases. New products with cannabinoid receptor agonists have been produced for horses. Cannabinoid receptors showed a wide distribution in the ileum of the horse. Activation of cannabinoids receptors could attenuate intestinal inflammation.”

https://www.sciencedirect.com/science/article/abs/pii/S073708062100318X?via%3Dihub

 

The Impact of CB1 Receptor on Inflammation in Skeletal Muscle Cells

Dove Medical Press - Open Access Publisher of Medical Journals“Background: Various factors trigger the inflammatory response and cytokine activation in skeletal muscle. Inflamed muscle will exhibit significant levels of inflammation and cytokine activity. Interleukin-6 (IL-6), a pro-inflammatory cytokine, exerts pleiotropic effects on skeletal muscle. Endocannabinoid produced by all cell types binds to a class of G protein-coupled receptors, in particular cannabinoid CB1 receptors, to induce skeletal muscle actions.

Objective: The purpose of this research was to discover whether activation of cannabinoid CB1 receptors in L6 skeletal muscle cells may promote IL-6 gene expression.

Materials and methods: L6 skeletal muscle cells were cultured in 25 cm2 flasks and quantitative reverse transcription-polymerase chain reaction (probe-based) utilised to quantify IL-6 gene expression levels among different treatment settings.

Results: Arachidonyl-2′-chloroethylamide (ACEA) 10 nM, a persistent selective CB1 receptor agonist, promotes IL-6 gene expression in a time-dependent manner. Rimonabant 100 nM, a selective cannabinoid CB1 receptor antagonist, blocks the impact of ACEA. However, insulin does not change IL-6 gene expression.

Conclusion: For the first time, a unique link between ACEA and IL-6 up-regulation has been established; IL-6 up-regulation generated by ACEA is mediated in skeletal muscle through cannabinoid CB1 receptor activation. As a result, cannabinoid CB1 receptors may be useful pharmaceutical targets in the treatment of inflammation and related disorders in skeletal muscle tissues.”

https://pubmed.ncbi.nlm.nih.gov/34421307/

“In the present study, I have demonstrated that when cannabinoid CB1 receptors are activated, the expression of IL-6 increases in a way that is influenced by time. Such findings deliver a novel mechanism characterised by cannabinoid analogue playing the role of a pro-inflammatory mediator in the skeletal muscle tissue. The findings from the present study also imply that there may be a possible therapeutic use of cannabinoid CB1 receptor antagonist at acute early states for skeletal muscle dysfunction related to inflammation. My findings point to skeletal muscle cell cannabinoid CB1 receptor as a therapeutic target, and expand its potential to include anti-inflammatory effects in diabetes, obesity, and sarcopenia.”

https://www.dovepress.com/the-impact-of-cb1-receptor-on-inflammation-in-skeletal-muscle-cells-peer-reviewed-fulltext-article-JIR

Pharmacological characterisation of the CB 1 receptor antagonist activity of cannabidiol in the rat vas deferens bioassay

European Journal of Pharmacology“Cannabidiol is increasingly considered for treatment of a wide range of medical conditions. Binding studies suggest that cannabidiol binds to CB1 receptors. In the rat isolated vas deferens bioassay, a single electrical pulse causes a biphasic contraction from nerve-released ATP and noradrenaline. WIN 55,212-2 acts on prejunctional CB1 receptors to inhibit release of these transmitters. In this bioassay, we tested whether cannabidiol and SR141716 were acting as competitive antagonists of this receptor. Monophasic contractions mediated by ATP or noradrenaline in the presence of prazosin or NF449 (P2X1 inhibitor), respectively, were measured to a single electrical pulse delivered every 30 min. Following treatment with cannabidiol (10-100 μM) or SR141716 (0.003-10 μM), cumulative concentrations of WIN 55,212-2 (0.001-30 μM) were applied followed by a single electrical pulse. The WIN 55,212-2 concentration-contraction curve EC50 values were applied to global regression analysis to determine the pKB. The antagonist potency of cannabidiol at the CB1 receptor in the rat vas deferens bioassay matched the reported receptor binding affinity. Cannabidiol was a competitive antagonist of WIN 55,212-2 with pKB values of 5.90 when ATP was the effector transmitter and 5.29 when it was noradrenaline. Similarly, SR141716 was a competitive antagonist with pKB values of 8.39 for ATP and 7.67 for noradrenaline as the active transmitter. Cannabidiol’s low micromolar CB1 antagonist pKB values suggest that at clinical blood levels (1-3 μM) it may act as a CB1 antagonist at prejunctional neuronal sites with more potency when ATP is the effector than for noradrenaline.”

https://pubmed.ncbi.nlm.nih.gov/34416240/

https://www.sciencedirect.com/science/article/abs/pii/S0014299921005860?via%3Dihub

In quest of a new therapeutic approach in COVID-19: the endocannabinoid system

Publication Cover“The SARS-Cov-2 virus caused a high morbidity and mortality rate disease, that is the COVID-19 pandemic. Despite the unprecedented research interest in this field, the lack of specific treatments leads to severe complications in a high number of cases.

Current treatment includes antivirals, corticosteroids, immunoglobulins, antimalarials, interleukin-6 inhibitors, anti-GM-CSF, convalescent plasma, immunotherapy, antibiotics, circulation support, oxygen therapy, and circulation support. Due to the limited results, until specific treatments are available, other therapeutic approaches need to be considered.

The endocannabinoid system is found in multiple systems within the human body, including the immune system. Its activation can lead to beneficial results such as decreased viral entry, decreased viral replication, and a decrease in pro-inflammatory cytokines such as IL-2, IL-4, IL-6, IL-12, TNF-α, or IFN-γ. Moreover, endocannabinoid system activation can lead to an increase in anti-inflammatory cytokines, mainly represented by IL-10.

Overall, the cannabinoid system can potentially reduce pulmonary inflammation, increase the immunomodulatory effect, decrease PMN infiltration, reduce fibrosis, and decrease viral replication, as well as decrease the ‘cytokine storm’. Although the cannabinoid system has many mechanisms to provide certain benefits in the treatment of SARS-CoV-2 infected patients, research in this field is needed for a better understanding of the cannabinoid impact in this situation.”

https://pubmed.ncbi.nlm.nih.gov/33683968/

“Concerning the SARS-CoV-2 infection, the cannabinoid effects on the immune system have the potential to limit the abnormal function of the immune system and therefore decrease the overall mortality.”

https://www.tandfonline.com/doi/full/10.1080/03602532.2021.1895204

Cannabinoids for skin diseases and hair regrowth

“The use of cannabis for skin diseases and hair regrowth is at the preliminary stage.

Legalization: Many countries have approved cannabis for medical use; however, four countries Canada, Uruguay, South Africa, and Georgia have legalized it for both medical and recreational purposes.

The endocannabinoid system: The endocannabinoid system may maintain skin homeostasis; two notable endocannabinoids include 2-Arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA).

Routes of administration and pharmacokinetics: Topical cannabinoids can avoid the first-pass metabolism and reduce respiratory side effects; however, the high hydrophobicity of cannabinoids may hinder percutaneous absorption.

Skin disorders and hair growth: Human clinical studies suggest that cannabinoids may be used in eczema, acne, pruritus, and systemic sclerosis treatment. Cannabidiol (CBD) may enhance hair growth via multiple mechanisms.

Safety: Topical cannabis may cause mild side effects such as pruritus, burning, erythema, and stinging; they are relatively safer than inhalation and oral cannabis. Cannabis use may be associated with allergic symptoms and reduced immune response to live vaccination.

Cannabinoids in practice: Despite growing interest, dermatologists should be cautious prescribing cannabinoids due to insufficient clinical data on both efficacy and safety.”

https://pubmed.ncbi.nlm.nih.gov/34363728/

https://onlinelibrary.wiley.com/doi/10.1111/jocd.14352