Cannabinoid receptor-1 antagonism: a new perspective on treating a murine schistosomal liver fibrosis model.

 SciELO - Scientific Electronic Library Online“Formation of schistosomal granulomata surrounding the ova can result in schistosomiasis-associated liver fibrosis (SSLF). The current standard of treatment is praziquantel (PZQ), which cannot effectively reverse SSLF.

The role of the cannabinoid (CB) receptor family in liver fibrosis has recently been highlighted.

This study aimed to assess the therapeutic effect of CB1 receptor antagonism in reversing SSLF in a murine model of Schistosoma mansoni infection.

MAIN CONCLUSIONS:

Combining PZQ with CB1 receptor antagonists yielded the best results in reversing SSLF. To our knowledge, this is the first study to test this regimen in S. mansoni infection.”

https://www.ncbi.nlm.nih.gov/pubmed/31389521

http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0074-02762019000100338&tlng=en

Cannabinoid CB2 Receptor Modulation by the Transcription Factor NRF2 is Specific in Microglial Cells.

 “Nuclear factor erythroid 2-related factor 2 (NRF2) is a pleiotropic transcription factor that has neuroprotective and anti-inflammatory effects, regulating more than 250 genes. As NRF2, cannabinoid receptor type 2 (CB2) is also implicated in the preservation of neurons against glia-driven inflammation. To this concern, little is known about the regulation pathways implicated in CB2 receptor expression. In this study, we analyze whether NRF2 could modulate the transcription of CB2 in neuronal and microglial cells. Bioinformatics analysis revealed an antioxidant response element in the promoter sequence of the CB2 receptor gene. Further analysis by chemical and genetic manipulations of this transcription factor demonstrated that NRF2 is not able to modulate the expression of CB2 in neurons. On the other hand, at the level of microglia, the expression of CB2 is NRF2-dependent. These results are related to the differential levels of expression of both genes regarding the brain cell type. Since modulation of CB2 receptor signaling may represent a promising therapeutic target with minimal psychotropic effects that can be used to modulate endocannabinoid-based therapeutic approaches and to reduce neurodegeneration, our findings will contribute to disclose the potential of CB2 as a novel target for treating different pathologies.”

https://www.ncbi.nlm.nih.gov/pubmed/31385133

https://link.springer.com/article/10.1007%2Fs10571-019-00719-y

Endocannabinoid System and Alcohol Abuse Disorders.

“Δ9-tetrahydrocannabinol (Δ9-THC), the primary active component in Cannabis sativa preparations such as hashish and marijuana, signals by binding to cell surface receptors. Two types of receptors have been cloned and characterized as cannabinoid (CB) receptors. CB1 receptors (CB1R) are ubiquitously present in the central nervous system (CNS) and are present in both inhibitory interneurons and excitatory neurons at the presynaptic terminal. CB2 receptors (CB2R) are demonstrated in microglial cells, astrocytes, and several neuron subpopulations and are present in both pre- and postsynaptic terminals.

The majority of studies on these receptors have been conducted in the past two and half decades after the identification of the molecular constituents of the endocannabinoid (eCB) system that started with the characterization of CB1R. Subsequently, the seminal discovery was made, which suggested that alcohol (ethanol) alters the eCB system, thus establishing the contribution of the eCB system in the motivation to consume ethanol. Several preclinical studies have provided evidence that CB1R significantly contributes to the motivational and reinforcing properties of ethanol and that the chronic consumption of ethanol alters eCB transmitters and CB1R expression in the brain nuclei associated with addiction pathways.

Additionally, recent seminal studies have further established the role of the eCB system in the development of ethanol-induced developmental disorders, such as fetal alcohol spectrum disorders (FASD). These results are augmented by in vitro and ex vivo studies, showing that acute and chronic treatment with ethanol produces physiologically relevant alterations in the function of the eCB system during development and in the adult stage. This chapter provides a current and comprehensive review of the literature concerning the role of the eCB system in alcohol abuse disorders (AUD).”

https://www.ncbi.nlm.nih.gov/pubmed/31332736

https://link.springer.com/chapter/10.1007%2F978-3-030-21737-2_6

“Binge Alcohol Exposure Transiently Changes the Endocannabinoid System: A Potential Target to Prevent Alcohol-Induced Neurodegeneration.”  https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5742761/

Endogenous cannabinoid levels and suicidality in combat veterans.

Psychiatry Research“Combat veterans are at elevated suicide risk. The goal of this study was to test the hypothesis that combat veterans who have made a suicide attempt post-deployment can be distinguished from combat veterans who have never made a suicide attempt based on differences in psychological and biological variables. For the latter, we focused on endogenous cannabinoids, neuroendocrine markers that are associated with stress. Demographic and clinical parameters of suicide attempters and non-attempters were assessed. Blood samples were assayed for anandamide (AEA), 2-arachidonoylglycerol (2-AG), and cortisol. Suicide attempters had higher Scale for Suicidal Ideation (SSI) scores in comparison to non-attempters. Controlling for gender, 2-AG levels were higher among suicide attempters in comparison to non-attempters. Cortisol levels positively correlated with 2-AG levels and negatively correlated with SSI scores among non-attempters but not among attempters. AEA levels negatively correlated with SSI scores among attempters but not among non-attempters. Our results indicate that there are psychological and biological differences between combat veterans with or without a history of suicidal attempt. Our findings also suggest that clinically observed differences between the groups may have a neurobiological basis.”

https://www.ncbi.nlm.nih.gov/pubmed/31375282

https://www.sciencedirect.com/science/article/abs/pii/S0165178119315173?via%3Dihub

“Role of the Endocannabinoid System in the Neurobiology of Suicide”  https://www.ncbi.nlm.nih.gov/books/NBK107200/

Stable Adult Hippocampal Neurogenesis in Cannabinoid Receptor CB2 Deficient Mice.

ijms-logo “The G-protein coupled cannabinoid receptor 2 (CB2) has been implicated in the regulation of adult neurogenesis in the hippocampus. The contribution of CB2 towards basal levels of proliferation and the number of neural progenitors in the subgranular zone (SGZ) of the dentate gyrus, however, remain unclear. We stained hippocampal brain sections of 16- to 17-week-old wildtype and CB2-deficient mice, for neural progenitor and immature neuron markers doublecortin (DCX) and calretinin (CR) and for the proliferation marker Ki67 and quantified the number of positive cells in the SGZ. The quantification revealed that CB2 deficiency neither altered overall cell proliferation nor the size of the DCX+ or DCX and CR double-positive populations in the SGZ compared to control animals. The results indicate that CB2 might not contribute to basal levels of adult neurogenesis in four-month-old healthy mice. CB2 signaling might be more relevant in conditions where adult neurogenesis is dynamically regulated, such as neuroinflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/31374821

“Cannabinoids have been linked to the regulation of adult neurogenesis (AN), a process in the mammalian brain that takes place in stem cell niches in the adult brain and is responsible for the continued generation of new neurons.”

https://www.mdpi.com/1422-0067/20/15/3759/htm

Endocannabinoid Signaling in the Central Amygdala and Bed Nucleus of the Stria Terminalis: Implications for the Pathophysiology and Treatment of Alcohol Use Disorder.

Alcoholism: Clinical and Experimental Research banner“High rates of relapse are a chronic and debilitating obstacle to effective treatment of alcohol use disorder (AUD); however, no effective treatments are available to treat symptoms induced by protracted abstinence.

In the first part of this two-part review series, we examine the literature supporting the effects of alcohol exposure within the extended amygdala (EA) neural circuitry.

In part two, we focus in on a potential way to combat negative affect associated with AUD, by exploring the therapeutic potential of the endogenous cannabinoid (eCB) system.

The eCB system is a potent modulator of neural activity in the brain, and its ability to mitigate stress and negative affect has long been an area of interest for developing novel therapeutics.

This review details the recent advances in our understanding of eCB signaling in two key regions of the EA, the central nucleus of the amygdala (CeA) and the bed nucleus of the stria terminalis (BNST), and their role in regulating negative affect.

Despite an established role for EA eCB signaling in reducing negative affect, few studies have examined the potential for eCB-based therapies to treat AUD-associated negative affect.

In this review, we present an overview of studies focusing on eCB signaling in EA and cannabinoid modulation on EA synaptic activity. We further discuss studies suggesting dysregulation of eCB signaling in models of AUD and propose that pharmacological augmentation of eCB could be a novel approach to treat aspects of AUD.

Lastly, future directions are proposed to advance our understanding of the relationship between AUD-associated negative affect and the EA eCB system that could yield new pharmacotherapies targeting negative affective symptoms associated with AUD.”

https://www.ncbi.nlm.nih.gov/pubmed/31373708

https://onlinelibrary.wiley.com/doi/abs/10.1111/acer.14159

The curative effect of cannabinoid 2 receptor agonist on functional failure and disruptive inflammation caused by intestinal ischemia and reperfusion.

Fundamental & Clinical Pharmacology banner“Ischemia and reperfusion of intestinal tissue (intestinal I/R) induces disruption of ileal contractility and chain responses of inflammatory.

The aim of this study was to reveal whether therapeutic value of cannabinoid 2 (CB2) receptor activity in the intestinal I/R, via to the exogenous administration of CB2 agonist (AM-1241).

Intestinal I/R injury were performed through 30 min ischemia and 150 min reperfusion of mesenteric artery in Wistar rats. The pre-administered doses of 0.1, 1, and 5 mg/kg of CB2 agonist were studied to inhibit inflammation of intestinal I/R injury including ileum smooth muscle contractility, polymorphonuclear cell migration, oxidant/antioxidant defence system, and provocative cytokines.

Pre-administration with CB2 receptor agonist ensured to considerable improving the disrupted contractile responses in ileum smooth muscle along with decreased the formation of MDA that production of lipid peroxidation, reversed the depleted glutathione, inhibited the expression of TNF-α and of IL-1β in the intestinal I/R of rats.

Taken together results of this research, the agonistic activity of CB2 receptor for healing of intestinal I/R injury is ensuring associated with anti-inflammatory mechanisms such as the inhibiting of migration of inflammatory polymorphonuclear cells that origin of acute and initial responses of inflammation, the inhibiting of production of provocative and pro-inflammatory cytokines like TNF-α and IL-1β, the rebalancing of oxidant/antioxidant redox system disrupted in injury of reperfusion period, and the supporting of physiologic defensive systems in endothelial and inducible inflammatory cells.”

https://www.ncbi.nlm.nih.gov/pubmed/31373049

https://onlinelibrary.wiley.com/doi/abs/10.1111/fcp.12502

The Endocannabinoid System May Modulate Sleep Disorders In Aging.

“Aging is an inevitable process that involves changes along life in multiple neurochemical, neuroanatomical, hormonal systems, and many others. In addition, these biological modifications lead to an increase in age-related sickness such as cardiovascular diseases, osteoporosis, neurodegenerative disorders, and sleep disturbances, among others that affect activities of daily life. Demographic projections have demonstrated that aging will increase its worldwide rate in the coming years. The research on chronic diseases of the elderly is important to gain insights into this growing global burden.

Novel therapeutic approaches aimed for treatment of age-related pathologies have included the endocannabinoid system as an effective tools since this biological system shows beneficial effects in preclinical models. However, and despite these advances, little has been addressed in the arena of the endocannabinoid system as option for treating sleep disorders in aging since experimental evidence suggests that some elements of the endocannabinoid system modulate the sleep-wake cycle.

This article addresses this less-studied field, focusing on the likely perspective of the implication of the endocannabinoid system in the regulation of sleep problems reported in aged. We conclude that beneficial effects regarding the putative efficacy of the endocannabinoid system as therapeutic tools in aging is either inconclusive or still missing.”

https://www.ncbi.nlm.nih.gov/pubmed/31368874

http://www.eurekaselect.com/174043/article

Modulators of the endocannabinoid system influence skin barrier repair, epidermal proliferation, differentiation and inflammation in a mouse model.

Experimental Dermatology banner“Endocannabinoids (ECs) are important regulators of cell signaling.

Cannabinoid receptors are involved in keratinocyte proliferation/differentiation.

Elevation of the endogenous cannabinoid tone leads to strong anti-inflammatory effects.

Here, we explored the influence of endocannabinoid system (ECS) modulators on skin permeability barrier repair, epidermal proliferation, differentiation and inflammation in hairless mice.

We used WOBE440, a selective fatty acid amide hydrolase (FAAH) inhibitor, WOL067-531, an inhibitor of endocannabinoid reuptake with no relevant FAAH activity, which both signal via cannabinoid receptor-1and 2 (CB-1R and CB-2R) and compared them to WOBE15 which signals via CB-2R.

We found that barrier repair was significantly delayed by WOL067-531.

In summary, we showed that WOL067-531 exhibits a significant effect on skin barrier repair, epidermal proliferation/differentiation and inflammation.”

https://www.ncbi.nlm.nih.gov/pubmed/31350927

https://onlinelibrary.wiley.com/doi/abs/10.1111/exd.14012

Endocannabinoid System and the Kidneys: From Renal Physiology to Injury and Disease.

View details for Cannabis and Cannabinoid Research cover image“As the prevalence of kidney disease continues to rise worldwide, there is accumulating evidence that kidney injury and dysfunction, whether acute or chronic, is associated with major adverse outcomes, including mortality. Meanwhile, effective therapeutic options in the treatment of acute kidney injury (AKI) and chronic kidney disease (CKD) have been sparse.

Many of the effective treatments that are routinely utilized for different pathologies in patients without kidney disease have failed to demonstrate efficacy in those with renal dysfunction. Hence, there is an urgent need for discovery of novel pathways that can be targeted for innovative and effective clinical therapies in renal disease states.

There is now accumulating evidence that the endocannabinoid (EC) system plays a prominent role in normal renal homeostasis and function. In addition, numerous recent studies have described mechanisms through which alteration in the EC system can contribute to kidney damage and disease. These include a potential role for cannabinoid receptors in tubulo-glomerular damage and fibrosis, which are common features of AKI, interstitial nephritis, glomerulopathy, and other conditions leading to AKI and CKD.

These findings suggest that manipulating the EC system may be an effective therapeutic strategy for the treatment of kidney disease and injury. However, further mechanistic studies are needed to fully delineate the role of this system in various conditions affecting the kidneys. Furthermore, while most of the current literature is focused on the role of the EC system as a whole in renal pathophysiology, future studies will also need to clarify the contribution of each component of this system, including the EC mediators, in the pathogenesis of kidney disease and their potential role as part of a therapeutic strategy.”

FIG. 1.