Cannabinoid receptors as therapeutic targets for autoimmune diseases: where do we stand?

Drug Discovery Today

“Described during the late 1980s and 1990s, cannabinoid receptors (CB1R and CB2R) are G-protein-coupled receptors (GPCRs) activated by endogenous ligands and cannabinoid drug compounds, such as Δ9-THC. Whereas CB1R has a role in the regulation of neurotransmission in different brain regions and mainly mediates the psychoactive effects of cannabinoids, CB2R is found predominantly in the cells and tissues of the immune system and mediates anti-inflammatory and immunomodulatory processes. Studies have demonstrated that CB1R and CB2R can affect the activation of T cells, B cells, monocytes, and microglial cells, inhibiting proinflammatory cytokine expression and upregulating proresolution mediators. Thus, in this review, we summarize the mechanisms by which CBRs interact with the autoimmune environment and the potential to suppress the development and activation of autoreactive cells. Finally, we highlight how the modulation of CB1R and CB2R is advantageous in the treatment of autoimmune diseases, including multiple sclerosis (MS), type 1 diabetes mellitus (T1DM) and rheumatoid arthritis (RA).”

https://www.ncbi.nlm.nih.gov/pubmed/31158514

https://www.sciencedirect.com/science/article/pii/S1359644618304847?via%3Dihub

Countering the Modern Metabolic Disease Rampage With Ancestral Endocannabinoid System Alignment.

 Image result for frontiers in endocrinology

“When primitive vertebrates evolved from ancestral members of the animal kingdom and acquired complex locomotive and neurological toolsets, a constant supply of energy became necessary for their continued survival. To help fulfill this need, the endocannabinoid (eCB) system transformed drastically with the addition of the cannabinoid-1 receptor (CB1R) to its gene repertoire. This established an eCB/CB1R signaling mechanism responsible for governing the whole organism’s energy balance, with its activation triggering a shift toward energy intake and storage in the brain and the peripheral organs (i.e., liver and adipose).

Although this function was of primal importance for humans during their pre-historic existence as hunter-gatherers, it became expendable following the successive lifestyle shifts of the Agricultural and Industrial Revolutions. Modernization of the world has further increased food availability and decreased energy expenditure, thus shifting the eCB/CB1R system into a state of hyperactive deregulated signaling that contributes to the 21st century metabolic disease pandemic.

Studies from the literature supporting this perspective come from a variety of disciplines, including biochemistry, human medicine, evolutionary/comparative biology, anthropology, and developmental biology. Consideration of both biological and cultural evolution justifies the design of improved pharmacological treatments for obesity and Type 2 diabetes (T2D) that focus on peripheral CB1R antagonism. Blockade of peripheral CB1Rs, which universally promote energy conservation across the vertebrate lineage, represents an evolutionary medicine strategy for clinical management of present-day metabolic disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/31156558

https://www.frontiersin.org/articles/10.3389/fendo.2019.00311/full

A selective CB2 agonist protects against the inflammatory response and joint destruction in collagen-induced arthritis mice.

Biomedicine & Pharmacotherapy

“Rheumatoid arthritis (RA) is a chronic, inflammatory, synovitis-dominated systemic disease with unknown etiology. RA is characterized by the involvement of multiple affected joints, symmetry, and invasive arthritis of the limbs, which can lead to joint deformity, cartilage destruction, and loss of function. Cannabinoid receptor 2 (CB2) has potent immunomodulatory and anti-inflammatory effects and is predominantly expressed in non-neuronal tissues. In the current study, the role of CB2 in the process of inflammatory bone erosion in RA was examined. The selective agonist or high-affinity ligand of CB2 (4-quinolone-3-carboxamides CB2 agonist, 4Q3C CB2agonist, 4Q3C) significantly reduced the severity of arthritis, decreased histopathological findings, and markedly reduced bone erosion in collagen-induced arthritis (CIA) mice. In addition, 4Q3C prevented an increase in the nuclear factor-κB ligand (RANKL)/osteoprotegerin (OPG) ratio and inhibited the formation of osteoclasts in CIA mice. Furthermore, the expression of tumor necrosis factor-alpha, interleukin-1β, cyclooxygenase-2, and inducible nitric oxide synthase was lower in 4Q3C-treated CIA mice than in control CIA mice. Micro-computed tomography corroborated the finding that 4Q3C reduced joint destruction. These data clearly indicate that the CB2-selective agonist, 4Q3C, may have anti-inflammatory and anti-osteoclastogenesis effects in RA and may be considered to be a novel treatment for RA.”

https://www.ncbi.nlm.nih.gov/pubmed/31154267

https://www.sciencedirect.com/science/article/pii/S0753332219307528?via%3Dihub

CB2 Cannabinoid receptor agonist ameliorates novel object recognition but not spatial memory in transgenic APP/PS1 mice.

Neuroscience Letters

“The cannabinoid receptor 2 (CB2R) has been considered as a potential therapeutic target to ameliorate the neuroinflammation and cognitive impairments of Alzheimer’s disease (AD). However, there has been little research on the diverse roles of CB2R in regulating different forms of cognitive abilities and underlying neuroinflammatory mechanisms. Thus, the focus of the present study was to investigate the effects of CB2R activation on cognitive abilities, activation and phenotype conversion of microglia, and dendrite complexity.

Results showed that CB2R activation normalized the cortex-dependent novel object recognition memory deficit in a novel object recognition test (P < 0.05) and CB2R activation was ineffective for hippocampus-dependent spatial cognitive dysfunction in the Morris water maze test (P > 0.05). Moreover, activation of CB2R did not affect the formation of plaque in either the cortex or hippocampus (P > 0.05). Interestingly, in the cortex but not in the hippocampus of APP/PS1 mice, there was decreased immunofluorescence intensity of Iba1, M1 to M2 microglial phenotype conversion, and restored dendritic complexity after a long treatment period of CB2R agonist (All P < 0.05).

Our results demonstrated that CB2R activation exerts a beneficial role in novel object recognition ability concomitant with region-specific regulation in microglia-mediated neuroinflammation and dendritic complexity in AD-model mice.”

https://www.ncbi.nlm.nih.gov/pubmed/31150731

https://www.sciencedirect.com/science/article/pii/S0304394019303581?via%3Dihub

The Endocannabinoid System: A New Treatment Target for Obsessive Compulsive Disorder?

View details for Cannabis and Cannabinoid Research cover image

“Obsessive-compulsive disorder (OCD) is a disabling illness that is associated with significant functional impairment. Although evidence-based pharmacotherapies exist, currently available medications are ineffective in some patients and may cause intolerable side effects in others. There is an urgent need for new treatments.

Discussion: A growing body of basic and clinical research has showed that the endocannabinoid system (ECS) plays a role in anxiety, fear, and repetitive behaviors. At the same time, some patients with OCD who smoke cannabis anecdotally report that it relieves their symptoms and mitigates anxiety, and several case reports describe patients whose OCD symptoms improved after they were treated with cannabinoids. Taken together, these findings suggest that the ECS could be a potential target for novel medications for OCD. In this study, we review evidence from both animal and human studies that suggests that the ECS may play a role in OCD and related disorders. We also describe findings from studies in which cannabinoid drugs were shown to impact symptoms of these conditions.

Recent studies in both humans and animals have shown a critical role for the ECS in anxiety, stress, fear, and repetitive/habitual behaviors. Moreover, many patients with OCD who use cannabis anecdotally report that it improves their symptoms and reduces anxiety.

Conclusions: An emerging body of evidence suggests that the ECS plays a role in OCD symptoms and may be a target for the development of novel medications. Further exploration of this topic through well-designed human trials is warranted.”

https://www.liebertpub.com/doi/10.1089/can.2018.0049

“Can cannabinoids help treat obsessive-compulsive disorder?”  https://eurekalert.org/pub_releases/2019-05/mali-cch053119.php

Modulation of the Endocannabinoid System as a Potential Anticancer Strategy.

 Image result for frontiers in pharmacology“Currently, the involvement of the endocannabinoid system in cancer development and possible options for a cancer-regressive effect of cannabinoids are controversially discussed. In recent decades, a number of preclinical studies have shown that cannabinoids have an anticarcinogenic potential. Therefore, especially against the background of several legal simplifications with regard to the clinical application of cannabinoid-based drugs, an extended basic knowledge about the complex network of the individual components of the endocannabinoid system is required. The canonical endocannabinoid system consists of the endocannabinoids N-arachidonoylethanolamine (anandamide) and 2-arachidonoylglycerol as well as the Gi/o protein-coupled transmembrane cannabinoidreceptors CB1 and CB2. As a result of extensive studies on the broader effect of these factors, other fatty acid derivatives, transmembrane and intracellular receptors, enzymes and lipid transporters have been identified that contribute to the effect of endocannabinoids when defined in the broad sense as “extended endocannabinoid system.” Among these additional components, the endocannabinoid-degrading enzymes fatty acid amide hydrolase and monoacylglycerol lipase, lipid transport proteins of the fatty acid-binding protein family, additional cannabinoid-activated G protein-coupled receptors such as GPR55, members of the transient receptor family, and peroxisome proliferator-activated receptors were identified as targets for possible strategies to combat cancer progression. Other endocannabinoid-related fatty acids such as 2-arachidonoyl glyceryl ether, O-arachidonoylethanolamine, N-arachidonoyldopamine and oleic acid amide showed an effect via cannabinoid receptors, while other compounds such as endocannabinoid-like substances exert a permissive action on endocannabinoid effects and act via alternative intracellular target structures. This review gives an overview of the modulation of the extended endocannabinoid system using the example of anticancer cannabinoid effects, which have been described in detail in preclinical studies.”

https://www.ncbi.nlm.nih.gov/pubmed/31143113

“In addition to the palliative effects of cannabinoid compounds in cancer treatment, the endocannabinoid system provides several targets for systemic anticancer treatment. Accordingly, preclinical studies suggest cannabinoids inhibit cancer progression via inhibition of cancer cell proliferation, neovascularization, invasion and chemoresistance, as well as induction of apoptosis, autophagy and increase of tumor immune surveillance.”

https://www.frontiersin.org/articles/10.3389/fphar.2019.00430/full

Cannabinoid Receptor 1 Blockade Attenuates Obesity and Adipose Tissue Type 1 Inflammation Through miR-30e-5p Regulation of Delta-Like-4 in Macrophages and Consequently Downregulation of Th1 Cells.

 Image result for frontier in immunology“Obesity is characterized by chronic low-grade inflammation that contributes to development of cardiometabolic disorders. Cannabinoid receptor 1 (CB1) antagonists attenuate diet-induced obesity (DIO) and related inflammation, although the precise anti-inflammatory mechanisms involved have not been fully explored. In the current study we used a mouse model of DIO intervention to determine the microRNA (miRNA, miR)-mediated anti-obesity and anti-inflammatory effects of the CB1 antagonist, AM251. DIO mice that were fed high-fat diet (HFD) for 12 weeks were treated with AM251 (10 mg/kg) for an additional 4 weeks. HFD + AM251 mice experienced rapid and prolonged weight loss and reduced inflammatory M1 adipose tissue macrophage (ATM) infiltration. To investigate miRNA-mediated regulation of ATMs, F4/80+ cells from stromal vascular fractions (SVF) of epididymal fat were subjected to miR microarray analysis. Several miRs were differentially expressed in AM251-treated mice that were independent of calorie restriction. Prominently, miR-30e-5p was upregulated in ATMs from HFD + AM251 mice while the miR-30e-5p target, DLL4, was downregulated. Consistent with a decrease in DLL4-Notch signaling, fat storage and pro-inflammatory cytokine/chemokine expression was reduced following AM251 treatment. Furthermore, we found that AM251-treated macrophages can suppress DLL4-mediated Th1 polarization in CD4+ T cells. Together these data demonstrate that blocking CB1 receptors leads to upregulation of miR-30e-5p and down regulation of DLL4 in ATMs, which in turn suppress DLL4-Notch signaling-induced polarization of inflammatory Th1 cells and adipocyte energy storage. This combined effect of ATMs and T cells leads to an anti-inflammatory state and attenuation of DIO. These data support therapeutic potential of miR-30 in the treatment of cardiometabolic disorders.”

https://www.ncbi.nlm.nih.gov/pubmed/31134094

https://www.frontiersin.org/articles/10.3389/fimmu.2019.01049/full

Retrograde activation of CB1R by muscarinic receptors protects against central organophosphorus toxicity.

Neuropharmacology“The acute toxicity of organophosphorus-based compounds is primarily a result of acetylcholinesterase inhibition in the central and peripheral nervous systems. The resulting cholinergic crisis manifests as seizure, paralysis, respiratory failure and neurotoxicity. Though overstimulation of muscarinic receptors is the mechanistic basis of central organophosphorus (OP) toxicities, short-term changes in synapse physiology that precede OP-induced seizures have not been investigated in detail. To study acute effects of OP exposure on synaptic function, field excitatory postsynaptic potentials (fEPSPs) were recorded from Schaffer collateral synapses in the mouse hippocampus CA1 stratum radiatum during perfusion with various OP compounds. Administration of the OPs paraoxon, soman or VX rapidly and stably depressed fEPSPs via a presynaptic mechanism, while the non-OP proconvulsant tetramethylenedisulfotetramine had no effect on fEPSP amplitudes. OP-induced presynaptic long-term depression manifested prior to interictal spiking, occurred independent of recurrent firing, and did not require NMDA receptor currents, suggesting that it was not mediated by activity-dependent calcium uptake. Pharmacological dissection revealed that the presynaptic endocannabinoid type 1 receptor (CB1R) as well as postsynaptic M1 and M3 muscarinic acetylcholine receptors were necessary for OP-LTD. Administration of CB1R antagonists significantly reduced survival in mice after a soman challenge, revealing an acute protective role for endogenous CB1R signaling during OP exposure. Collectively these data demonstrate that the endocannabinoid system alters glutamatergic synaptic function during the acute response to OP acetylcholinesterase inhibitors.”

https://www.ncbi.nlm.nih.gov/pubmed/31132436

“CB1R activation represents a novel therapy to mitigate acute OP toxicity”

https://www.sciencedirect.com/science/article/pii/S002839081930190X?via%3Dihub

Evidence for the use of cannabinoids in Parkinson’s disease.

 “Cannabis and synthetic cannabinoid formulations have now been legally approved in several countries for treatment of patients with Parkinson’s disease (PD). Hence, PD patients consult physicians more frequently for prescription of cannabinoids to alleviate symptoms that might not respond well to dopaminergic treatment. Despite the increasing volume of research generated in the field of cannabinoids and their effect on Parkinson’s disease, there is still paucity of sufficient clinical data about the efficacy and safety in PD patients. There is increasing understanding of the endocannabinoid system, and the distribution of cannabinoid receptors in basal ganglia structures might suggest potential benefit on parkinsonian symptoms. Concerning clinical research, only one of to date four conducted randomized placebo-controlled trials showed an effect on motor symptoms with alleviation of levodopa-induced dyskinesia. There are a growing number of uncontrolled trials and case reports that suggest beneficial effects of cannabinoids in PD patients. However, the variety of substances investigated, the varying routes of intake, differing doses and time courses make it difficult to compare data. We here provide an overview of the current literature in this field and discuss a pragmatic approach for the clinical use of cannabinoids in PD.”

https://www.ncbi.nlm.nih.gov/pubmed/31131434

https://link.springer.com/article/10.1007%2Fs00702-019-02018-8

Activation of cannabinoid type 2 receptor protects skeletal muscle from ischemia-reperfusion injury partly via Nrf2 signaling.

Life Sciences“Cannabinoid type 2 (CB2) receptor activation has been shown to attenuate IRI in various organs. NF-E2-related factor (Nrf2) is an anti-oxidative factor that plays multiple roles in regulating cellular redox homeostasis and modulating cell proliferation and differentiation. The protective effects of CB2 receptor activation on skeletal muscle IRI and the underlying mechanism that involves Nrf2 signaling remain unknown.

Our results showed that CB2 receptor activation reduced IR-induced histopathological lesions, edema, and oxidative stress 1 day post-injury and accelerated early myogenesis 4 days post-injury in mice. Nrf2 knockout mice that were treated with AM1241 exhibited deteriorative skeletal muscle oxidative damage and myogenesis. In vitro, pretreatment with AM1241 significantly increased the expression of Nrf2 and its nuclear translocation, attenuated the decrease in H2O2-induced C2C12 cell viability, and decreased reactive oxygen species generation and apoptosis. CB2 receptor activation also significantly enhanced C2C12 myoblasts differentiation, which was impaired by silencing Nrf2.

Overall, CB2 receptor activation protected skeletal muscle against IRI by ameliorating oxidative damage and promoting early skeletal muscle myogenesis, which was partly via Nrf2 signaling.”

https://www.ncbi.nlm.nih.gov/pubmed/31128135

https://www.sciencedirect.com/science/article/abs/pii/S0024320519304126?via%3Dihub