The Cannabinoid CB2 Receptor as a Target for Inflammation-Dependent Neurodegeneration

“THE CANNABINOID CB2 RECEPTOR AS A BIORATIONAL TARGET FOR THE TREATMENT OF NEURODEGENERATION. The presence of CB2 receptors in microglia in the human Alzheimer’s diseased brain suggests that CB2 may provide a novel target for a range of neuropathologies.

 The first approved cannabinoid drugs were analogues of Δ9-tetrahydrocannabinol (Δ9-THC). Dronabinol is a natural isomer of THC that is found in the cannabis plant, and Marinol contains synthetic dronabinol. Marinol, and another analogue nabilone (Cesamet ) are used to prevent nausea and vomiting after treatment with anti-cancer medicines. More recently, GW-100 (Sativex) which combines nearly equal amounts of Δ9-THC and cannabidiol in a whole plant extract from cultivated cannabis, has been approved in Canada…

We conclude that the administration of CB2 agonists and antagonists may differentially alter microglia-dependent neuroinflammation. CB2 specific compounds have considerable therapeutic appeal over CB1 compounds, as the exclusive expression of CB2 on immune cells within the brain provides a highly specialised target, without the psychoactivity that plagues CB1 directed therapies.

In addition, CB2 activation appears to prevent or decrease microglial activation.

In a rodent model of Alzheimer’s disease microglial activation was completely prevented by administration of a selective CB2 agonist.”

http://www.ncbi.nlm.nih.gov/pubmed/18615177

Role of CB2 receptors in neuroprotective effects of cannabinoids.

“CB2 receptors, the so-called peripheral cannabinoid receptor type, were first described in the immune system, but they have been recently identified in the brain in healthy conditions and, in particular, after several types of cytotoxic stimuli. Specifically, CB2 receptors were identified in microglial cells, astrocytes and, to a lesser extent, in certain subpopulations of neurons.

Given the lack of psychoactivity demonstrated by selective CB2 receptor agonists, this receptor becomes an interesting target for the treatment of neurological diseases, in particular, the case of certain neurodegenerative disorders in which induction/up-regulation of CB2 receptors has been already demonstrated. These disorders include Alzheimer’s disease, Huntington’s chorea, amyotrophic lateral sclerosis and others. Interestingly, in experimental models of these disorders, the activation of CB2 receptors has been related to a delayed progression of neurodegenerative events, in particular, those related to the toxic influence of microglial cells on neuronal homeostasis.

 The present article will review the evidence supporting that CB2 receptors might represent a key element in the endogenous response against different types of cytotoxic events, and that this receptor type may be a clinically promising target for the control of brain damage in neurodegenerative disorders.”

 http://www.ncbi.nlm.nih.gov/pubmed/18291574

Cannabinoid CB2 receptors in human brain inflammation.

“CB2 receptors in neuroinflammatory conditions of the human brain.

“CB2 receptors have been found to be present in the CNS, thus offering new opportunities for the pharmacological use of cannabinoid agents. Furthermore, the fact that their expression is increased by inflammatory stimuli suggests that they may be involved in the pathogenesis and/or in the endogenous response to injury. Data obtained in vitro and in animal models show that CB2 receptors may be part of the general neuroprotective action of the ECS…

The anti-inflammatory effects triggered by the activation of the CB2 receptor make it an attractive target for the development of novel anti-inflammatory therapies.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219537/

Stimulation of cannabinoid receptor 2 (CB2) suppresses microglial activation

“Activated microglial cells have been implicated in a number of neurodegenerative disorders, including Alzheimer’s disease (AD), multiple sclerosis (MS), and HIV dementia. Many data reveal that cannabinoids mediate suppression of inflammation in vitro and in vivo through stimulation of cannabinoid receptor 2 (CB2).

Taken together, these results provide mechanistic insight into beneficial effects provided by cannabinoid receptor CB2 modulation in neurodegenerative diseases, particularly AD.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC1352348/

The endocannabinoid system in targeting inflammatory neurodegenerative diseases.

“The classical divide between degenerative and inflammatory disorders of the CNS is vanishing as accumulating evidence shows that inflammatory processes are important in the pathophysiology of primarily degenerative disorders, and neurodegeneration complicates primarily inflammatory diseases of the brain and spinal cord. Here, we review the contribution of degenerative and inflammatory processes to CNS disorders such as Alzheimer’s disease, Parkinson’s disease, amyotrophic lateral sclerosis, multiple sclerosis and HIV-associated dementia.

An early combination of neuroprotective and anti-inflammatory approaches to these disorders seems particularly desirable because isolated treatment of one pathological process might worsen another.

We also discuss the apparently unique opportunity to modify neurodegeneration and neuroinflammation simultaneously by pharmacological manipulation of the endocannabinoid system in the CNS and in peripheral immune cells. Current knowledge of this system and its involvement in the above CNS disorders are also reviewed.”

http://www.ncbi.nlm.nih.gov/pubmed/17350694

Endocannabinoid system: emerging role from neurodevelopment to neurodegeneration.

“The endocannabinoid system, including endogenous ligands (‘endocannabinoids’ ECs), their receptors, synthesizing and degrading enzymes, as well as transporter molecules, has been detected from the earliest stages of embryonic development and throughout pre- and postnatal development. ECs are bioactive lipids, which comprise amides, esters and ethers of long chain polyunsaturated fatty acids. Anandamide (N-arachidonoylethanolamine; AEA) and 2-arachidonoylglycerol (2-AG) are the best studied ECs, and act as agonists of cannabinoid receptors.

Thus, AEA and 2-AG mimic several pharmacological effects of the exogenous cannabinoid delta9-tetrahydrocannabinol (Delta(9)-THC), the psychoactive principle of cannabis sativa preparations like hashish and marijuana. Recently, however, several lines of evidence have suggested that the EC system may play an important role in early neuronal development as well as a widespread role in neurodegeneration disorders. Many of the effects of cannabinoids and ECs are mediated by two G protein-coupled receptors (GPCRs), CB1 and CB2, although additional receptors may be implicated. Both CB1 and CB2 couple primarily to inhibitory G proteins and are subject to the same pharmacological influences as other GPCRs. This new system is briefly presented in this review, in order to put in a better perspective the role of the EC pathway from neurodevelopment to neurodegenerative disorders, like Alzheimer’s disease, Parkinson’s disease, Huntington’s disease, and multiple sclerosis.

In addition, the potential exploitation of antagonists of CB1 receptors, or of inhibitors of EC metabolism, as next-generation therapeutics is discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/19356123

Cannabinoids Δ9-Tetrahydrocannabinol and Cannabidiol Differentially Inhibit the Lipopolysaccharide-activated NF-κB and Interferon-β/STAT Proinflammatory Pathways in BV-2 Microglial Cells

“Cannabinoids have been shown to exert anti-inflammatory activities in various in vivo and in vitro experimental models as well as ameliorate various inflammatory degenerative diseases. Δ9-Tetrahydrocannabinol (THC)is a major constituent of Cannabis and serves as an agonist of the cannabinoid receptors CB1 and CB2.

The second major constituent of Cannabis extract is cannabidiol (CBD). CBD lacks the psychoactive effects that accompany the use of THC. Moreover, CBD was demonstrated to antagonize some undesirable effects of THC, including intoxication, sedation, and tachycardia, while sharing neuroprotective, anti-oxidative, anti-emetic, and anti-carcinogenic properties. Both THC and CBD have been shown to exert anti-inflammatory properties and to modulate the function of immune cells…

In summary, our results show that although both THC and CBD exert anti-inflammatory effects, the two compounds engage different, although to some extent overlapping, intracellular pathways. Both THC and CBD decrease the activation of proinflammatory signaling…

 The cannabinoids by moderating or disrupting these signaling networks may show promise as anti-inflammatory agents.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2804319/

Cannabinoid Receptor Type 1 Protects Nigrostriatal Dopaminergic Neurons against MPTP Neurotoxicity by Inhibiting Microglial Activation

“The present in vivo and in vitro findings clearly indicate that the CB1 receptor possesses anti-inflammatory properties and inhibits microglia-mediated oxidative stress.

 Our results collectively suggest that the cannabinoid system is beneficial for the treatment of Parkinson’s disease and other disorders associated with neuroinflammation and microglia-derived oxidative damage.

CB1 receptor is a useful pharmacological target for treating PD and other disorders associated with neuroinflammation and microglia-derived oxidative damage. ”

http://www.jimmunol.org/content/187/12/6508.long

Cannabinoids and neurodegenerative diseases.

“Although significant advances have taken place in recent years on our understanding of the molecular mechanisms of different neurodegenerative diseases, its translation into effective therapeutic treatments has not been as successful as could be expected. There is still a dramatic lack of curative treatments for the most frequent disorders and only symptomatic relief for many others. Under this perspective, the search for novel therapeutic approaches is demanding and significant attention and efforts have been directed to studying additional neurotransmission systems including the endocannabinoid system (ECS).

The neuroprotective properties of exogenous as well as endogenous cannabinoids have been known for years and the underlying molecular mechanisms have been recently unveiled. As discussed later, antioxidative, antiglutamatergic and antiinflammatory effects are now recognized as derived from cannabinoid action and are known to be of common interest for many neurodegenerative processes.

 Thus, these characteristics make cannabinoids attractive candidates for the development of novel therapeutic strategies.

 The present review will focus on the existing data regarding the possible usefulness of cannabinoid agents for the treatment of relevant neurological pathologies for our society such as Alzheimer’s disease, multiple sclerosis, Huntington’s disease and amyotrophic lateral sclerosis.”

http://www.ncbi.nlm.nih.gov/pubmed/19839933

Effects of cannabinoids on the immune system and central nervous system: therapeutic implications.

“Cannabinoids possess immunomodulatory activity, are neuroprotective in vivo and in vitro and can modify the production of inflammatory mediators… Cannabinoid-induced immunosuppression may have implications for the treatment of neurological disorders that are associated with excess immunological activity, such as multiple sclerosis and Alzheimer’s disease. There is anecdotal evidence that cannabis use improves the symptoms of multiple sclerosis, and studies with animal models are beginning to provide evidence for the mechanism of such effects. The development of nonpsychotropic cannabinoid analogues and modulators of the metabolism of endogenous cannabinoid ligands may lead to novel approaches to the treatment of neurodegenerative disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/18031185