Anti-Obesity Effect of the CB2 Receptor Agonist JWH-015 in Diet-Induced Obese Mice.

“The cannabinoid receptor 2 (CB2) is well known for its immune modulatory role. However, recent localisation of CB2 receptors in metabolically active tissue suggests that the CB2 receptor plays a significant role in energy homeostasis.

This study was designed to investigate the impact of chronic CB2 receptor stimulation on food intake, body weight and mood.

These results demonstrate a role for CB2 receptors in modulating energy homeostasis and obesity associated metabolic pathologies in the absence of any adverse impact on mood.”

http://www.ncbi.nlm.nih.gov/pubmed/26588700

Metabolic Syndrome among Marijuana Users in the United States: An Analysis of National Health and Nutrition Examination Survey Data.

“Research on the health effects of marijuana use in light of its increased medical use and the current obesity epidemic is needed. Our objective was to explore the relationship between marijuana use and metabolic syndrome across stages of adulthood…

Current marijuana users had lower odds of presenting with metabolic syndrome than never users. Among emerging adults, current marijuana users were 54% less likely than never users to present with metabolic syndrome. Current and past middle-aged adult marijuana users were less likely to have metabolic syndrome than never users.

CONCLUSIONS:

Current marijuana use is associated with lower odds of metabolic syndrome across emerging and middle-aged US adults.”

http://www.ncbi.nlm.nih.gov/pubmed/26548604

Controlled downregulation of the cannabinoid CB1 receptor provides a promising approach for the treatment of obesity and obesity-derived type 2 diabetes.

“Increased activity of the endocannabinoid system has emerged as a pathogenic factor in visceral obesity, which is a risk factor for type 2 diabetes mellitus (T2DM).

The endocannabinoid system is composed of at least two G-protein-coupled receptors (GPCRs), the cannabinoid receptor type 1 (CB1), and the cannabinoid receptor type 2 (CB2).

Downregulation of CB1 activity in rodents and humans has proven efficacious to reduce food intake, abdominal adiposity, fasting glucose levels, and cardiometabolic risk factors.

Unfortunately, downregulation of CB1 activity by universally active CB1 inverse agonists has been found to elicit psychiatric side effects, which led to the termination of using globally active CB1 inverse agonists to treat diet-induced obesity.

Interestingly, preclinical studies have shown that downregulation of CB1 activity by CB1 neutral antagonists or peripherally restricted CB1 inverse agonists provided similar anorectic effects and metabolic benefits without psychiatric side effects seen in globally active CB1 inverse agonists.

Furthermore, downregulation of CB1 activity may ease endoplasmic reticulum and mitochondrial stress which are contributors to obesity-induced insulin resistance and type 2 diabetes.

This suggests new approaches for cannabinoid-based therapy in the management of obesity and obesity-related metabolic disorders including type 2 diabetes.”

http://www.ncbi.nlm.nih.gov/pubmed/26498013

Cannabis: a self-medication drug for weight management? The never ending story.

“In a society highly focused on physical appearance, people are increasingly using the so-called performance and image-enhancing drugs (PIEDs) or life-style drugs as an easy way to control weight.

Preliminary data from online sources suggest an increased use of cannabis amongst the general population as a PIED due to its putative weight-loss properties…”

http://www.ncbi.nlm.nih.gov/pubmed/26456495

The Endocannabinoid System: Pivotal Orchestrator of Obesity and Metabolic Disease.

Related image

“The endocannabinoid system (ECS) functions to adjust behavior and metabolism according to environmental changes in food availability.

Its actions range from the regulation of sensory responses to the development of preference for the consumption of calorically-rich food and control of its metabolic handling.

ECS activity is beneficial when access to food is scarce or unpredictable.

However, when food is plentiful, the ECS favors obesity and metabolic disease.

We review recent advances in understanding the roles of the ECS in energy balance, and discuss newly identified mechanisms of action that, after the withdrawal of first generation cannabinoid type 1 (CB1) receptor antagonists for the treatment of obesity, have made the ECS once again an attractive target for therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/26412154

https://www.cell.com/trends/endocrinology-metabolism/fulltext/S1043-2760(15)00140-X?_returnURL=https%3A%2F%2Flinkinghub.elsevier.com%2Fretrieve%2Fpii%2FS104327601500140X%3Fshowall%3Dtrue

Endocannabinoids and Metabolic Disorders.

“The endocannabinoid system (ECS) is known to exert regulatory control on essentially every aspect related to the search for, and the intake, metabolism and storage of calories, and consequently it represents a potential pharmacotherapeutic target for obesity, diabetes and eating disorders.

While the clinical use of the first generation of cannabinoid type 1 (CB1) receptor blockers has been halted due to the psychiatric side effects that their use occasioned, recent research in animals and humans has provided new knowledge on the mechanisms of actions of the ECS in the regulation of eating behavior, energy balance, and metabolism.

In this review, we discuss these recent advances and how they may allow targeting the ECS in a more specific and selective manner for the future development of therapies against obesity, metabolic syndrome, and eating disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26408168

New insights on the role of the endocannabinoid system in the regulation of energy balance.

“Within the last 15 years, the endocannabinoid system (ECS) has emerged as a lipid signaling system critically involved in the regulation of energy balance, since it exerts a regulatory control on every aspect related to the search, the intake, the metabolism and the storage of calories.

An overactive endocannabinoid-cannabinoid type 1 (CB1) receptor signaling promotes the development of obesity, insulin resistance and dyslipidemia, representing a valuable pharmacotherapeutic target for obesity and metabolic disorders.

However, due to psychiatric side effects, the first generation of brain-penetrant CB1 receptor blockers developed as anti-obesity treatment was removed from the European market in late 2008.

Since then, recent studies have identified new mechanisms of action of the ECS in energy balance and metabolism, as well as novel ways of targeting the system that may be efficacious for the treatment of obesity and metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26374449

Tetrahydrocannabivarin (THCv) reduces Default Mode Network and increases Executive Control Network Resting State Functional Connectivity in Healthy Volunteers.

“The cannabinoid CB1 Neutral Antagonist Tetrahydrocannabivarin (THCv) has been suggested as a possible treatment for obesity but without the depressogenic side-effects of inverse antagonists such as Rimonabant.

Our findings are the first to show that treatment with the CB1 neutral antagonist THCv decreases resting state functional connectivity in the Default Mode network and increases connectivity in the Cognitive Control network and Dorsal Visual Stream network.

This effect profile suggests possible therapeutic activity of THCv for obesity where functional connectivity has been found to be altered in these regions.”

http://www.ncbi.nlm.nih.gov/pubmed/26362774

Combination cannabinoid and opioid receptor antagonists improves metabolic outcomes in obese mice.

“This study demonstrates that the combination of rimonabant, naloxone and norBNI is effective at producing weight loss over a sustained period of time without altering performance in standardised mouse behaviour tests. Fos expression patterns offer insight into the neuroanatomical substrates subserving these physiological and behavioural changes.

These results indicate that CB1-targeted drugs for weight loss may still be feasible.”

http://www.ncbi.nlm.nih.gov/pubmed/26360587

G protein-coupled receptor 18: A potential role for endocannabinoid signalling in metabolic dysfunction.

“Endocannabinoids are products of dietary fatty acids that are modulated by an alteration in food intake levels.

Overweight and obese individuals have substantially higher circulating levels of the arachidonic acid-derived endocannabinoids, anandamide and 2-arachidonoyl glycerol, and show an altered pattern of cannabinoid receptor expression.

These cannabinoid receptors are part of a large family of G protein-coupled receptors (GPCRs).

GPCRs are major therapeutic targets for various diseases within the cardiovascular, neurological, gastrointestinal and endocrine systems, as well as metabolic disorders such as obesity and type 2 diabetes mellitus.

Obesity is considered a state of chronic low grade inflammation elicited by an immunological response.

Interestingly, the newly deorphanised G protein-coupled receptor GPR18, which is considered to be a putative cannabinoid receptor, is proposed to have an immunological function.

In this review, the current scientific knowledge on GPR18 is explored including its localisation, signalling pathways and pharmacology.

Importantly, the involvement of nutritional factors and potential dietary regulation of GPR18 and its (patho)physiological roles are described.

Further research on this receptor and its regulation will enable a better understanding of the complex mechanisms of GPR18 and its potential as a novel therapeutic target for treating metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26337420