Are Cannabinoids Effective for Orofacial Pain States?

“…there is increasing attention being given in the media as well as in the biomedical sciences to the use as analgesic agents of the crude extracts of plants of the genus Cannabis (eg, marijuana) and their active ingredient delta 9-tetrahydrocannabinol (Δ9-THC).

These cannabinoid compounds have been reported in the biomedical literature to be beneficial in the treatment of some types of neuropathic pain and other pain states…

This review has found evidence indicating that they may be effective analgesic agents for neuropathic pain conditions refractory to other therapeutic approaches…

The clinical findings pointing to the usefulness of the cannabinoids for pain relief are supported by a growing body of evidence from basic science investigations addressing the possible efficacy and mechanisms of action of the cannabinoids in animal models of acute or chronic pain.

These preclinical findings add to the growing evidence that cannabinoid receptor agonists may be effective agents for the treatment of neuropathic pain and other types of pain.

They also point to their possible clinical utility in acute or chronic orofacial pain conditions, and thereby suggest an affirmative answer applies to the question posed in the title of this editorial.”

http://www.quintpub.com/journals/ofph/abstract.php?article_id=15025#.VPBsU033-iw

http://www.thctotalhealthcare.com/category/pain-2/

Interactions of the opioid and cannabinoid systems in reward: Insights from knockout studies.

“The opioid system consists of three receptors, mu, delta, and kappa, which are activated by endogenous opioid peptides (enkephalins, endorphins, and dynorphins).

The endogenous cannabinoid system comprises lipid neuromodulators (endocannabinoids), enzymes for their synthesis and their degradation and two well-characterized receptors, cannabinoid receptors CB1 and CB2.

These systems play a major role in the control of pain as well as in mood regulation, reward processing and the development of addiction.

Both opioid and cannabinoid receptors are coupled to G proteins and are expressed throughout the brain reinforcement circuitry.

A better understanding of opioid-cannabinoid interactions may provide novel strategies for therapies in addicted individuals.”

http://www.ncbi.nlm.nih.gov/pubmed/25698968

Tonic Modulation of Nociceptive Behavior and Allodynia by Cannabinoid Receptors in Formalin Test in Rats.

“Cannabinoids produce anti-nociceptive and anti-hyperalgesic effects in acute, inflammatory and neuropathic pain models.

The current study investigated the role of cannabinoid (CB1 and CB2) receptors in modulating formalin-induced nociceptive behavior and mechanical allodynia in the rat…

The results indicate that CB1 and CB2 receptors mediate a tonically inhibitory action on formalin-induced inflammatory pain, especially long-term allodynia, in bilateral hind paws.”

http://www.ncbi.nlm.nih.gov/pubmed/25687494

http://www.thctotalhealthcare.com/category/pain-2/

Experience of adjunctive cannabis use for chronic non-cancer pain: Findings from the Pain and Opioids IN Treatment (POINT) study.

“There is increasing debate about cannabis use for medical purposes, including for symptomatic treatment of chronic pain. We investigated patterns and correlates of cannabis use in a large community sample of people who had been prescribed opioids for chronic non-cancer pain.

CONCLUSIONS:

Cannabis use for pain relief purposes appears common among people living with chronic non-cancer pain, and users report greater pain relief in combination with opioids than when opioids are used alone.”

http://www.ncbi.nlm.nih.gov/pubmed/25533893

http://www.thctotalhealthcare.com/category/pain-2/

Re-branding cannabis: the next generation of chronic pain medicine?

“The field of pain medicine is at a crossroads given the epidemic of addiction and overdose deaths from prescription opioids. Cannabis and its active ingredients, cannabinoids, are a much safer therapeutic option.

Despite being slowed by legal restrictions and stigma, research continues to show that when used appropriately, cannabis is safe and effective for many forms of chronic pain and other conditions, and has no overdose levels.

Current literature indicates many chronic pain patients could be treated with cannabis alone or with lower doses of opioids.

To make progress, cannabis needs to be re-branded as a legitimate medicine and rescheduled to a more pharmacologically justifiable class of compounds.

This paper discusses the data supporting re-branding and rescheduling of cannabis.”

http://www.ncbi.nlm.nih.gov/pubmed/25537695

http://www.thctotalhealthcare.com/category/chronic-pain/

The antinociceptive effect of Delta9-tetrahydrocannabinol in the arthritic rat.

“Our study addressed the hypothesis that spinal release of endogenous opioids underlies Delta9-tetrahydrocannabinol (Delta9-THC)-induced antinociception in Freund’s adjuvant-induced arthritic and nonarthritic rats…

Our results indicate that morphine or Delta9-THC is equally potent and efficacious in both nonarthritic and arthritic rats.

Delta9-THC-induced antinociception…

We hypothesize that the elevated idyn A level in arthritic rats contributes to hyperalgesia by interaction with N-methyl-D-aspartate receptors, and that Delta9-THC induces antinociception by decreasing idyn A release.”

http://www.ncbi.nlm.nih.gov/pubmed/15189765

http://www.thctotalhealthcare.com/category/arthritis/

The antinociceptive effect of Delta9-tetrahydrocannabinol in the arthritic rat involves the CB(2) cannabinoid receptor.

“Cannabinoid CB(2) receptors have been implicated in antinociception in animal models of both acute and chronic pain.

We evaluated the role both cannabinoid CB(1) and CB(2) receptors in mechanonociception in non-arthritic and arthritic rats.

The antinociceptive effect of Delta(9)-tetrahydrocannabinol (Delta(9)THC) was determined…

Our results indicate that the cannabinoid CB(2) receptor plays a critical role in cannabinoid-mediated antinociception, particularly in models of chronic inflammatory pain.”

http://www.ncbi.nlm.nih.gov/pubmed/17588560

http://www.thctotalhealthcare.com/category/arthritis/

http://www.thctotalhealthcare.com/category/pain-2/

Cannabinoids and muscular pain. Effectiveness of the local administration in rat.

“Pain associated with musculoskeletal disorders can be difficult to control and the incorporation of new approaches for its treatment is an interesting challenge.

Activation of cannabinoid (CB) receptors decreases nociceptive transmission in acute, inflammatory and neuropathic pain states…

Our results provide evidence that both, CB 1 and CB 2 receptors can contribute to muscular antinociception and, interestingly, suggest that the local administration of CB agonists could be a new and useful pharmacological strategy in the treatment of muscular pain, avoiding adverse effects induced by systemic administration.”

http://www.ncbi.nlm.nih.gov/pubmed/22354705

http://www.thctotalhealthcare.com/category/pain-2/

Involvement of central and peripheral cannabinoid receptors on antinociceptive effect of tetrahydrocannabinol in muscle pain.

“Cannabinoid (CB) receptors have emerged as an attractive therapeutic target for pain management in recent years and the interest in the use of cannabinoids is gradually increasing, particularly in patients where conventional treatments fail…

This study suggests that THC could be a future pharmacological option in the treatment of muscle pain.

The local administration of THC could be an interesting option to treat this type of pain avoiding the central adverse effects.”

http://www.ncbi.nlm.nih.gov/pubmed/25446925

http://www.thctotalhealthcare.com/category/pain-2/

Cannabinoids in the treatment of pain

“Cannabinoids and the endo-cannabinoid system play an important role in the sensation of pain. As conventional analgesics are often associated with serious side-effects, cannabinoids and agonists of their receptors offer a useful alternative or coanalgesic in the treatment of pain. The aim of this work is to summarize the role of cannabinoids and their receptors in nociception and pain treatment.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2991928/

Cannabinoids seem to be effective against neuropathic pain, inflammatory pain, post-operative pain and cancer pain. Their use as analgesics or coanalgesics may offer a useful alterative option for pain management in clinical practice.” http://www.annals-general-psychiatry.com/content/9/S1/S232/abstract

http://www.thctotalhealthcare.com/category/pain-2/