Cannabinoid receptor 2‑selective agonist JWH015 attenuates bone cancer pain through the amelioration of impaired autophagy flux induced by inflammatory mediators in the spinal cord.

Journal Cover “Bone cancer pain (BCP) is a severe complication of advanced bone cancer.

Although cannabinoid receptor 2 (CB2) agonists may have an analgesic effect, the underlying mechanism remains unclear.

CB2 serves a protective role in various pathological states through the activation of autophagy. Therefore, the present study aimed to determine whether the analgesic effects of the selective CB2 agonist JWH015 was mediated by the activation of autophagy in BCP.

The results of the present study suggested that the impairment of autophagy flux was induced by glia‑derived inflammatory mediators in spinal neurons. Intrathecal administration of the selective CB2 agonist JWH015 ameliorated autophagy flux through the downregulation of IL‑1β and IL‑6 and attenuated BCP.”

https://www.ncbi.nlm.nih.gov/pubmed/31661120

https://www.spandidos-publications.com/10.3892/mmr.2019.10772

WIN55,212-2-Induced Expression of Mir-29b1 Favours the Suppression of Osteosarcoma Cell Migration in a SPARC-Independent Manner.

ijms-logo“WIN55,212-2 (WIN) is a synthetic agonist of cannabinoid receptors that displays promising antitumour properties.

The aim of this study is to demonstrate that WIN is able to block the migratory ability of osteosarcoma cells and characterize the mechanisms involved.

Overall, these findings suggest that WIN markedly affects cell migration, dependently on miR-29b1 and independently of SPARC, and can thus be considered as a potential innovative therapeutic agent in the treatment of osteosarcoma.”

https://www.ncbi.nlm.nih.gov/pubmed/31652569

https://www.mdpi.com/1422-0067/20/20/5235

A role for cannabinoids in the treatment of myotonia? Report of compassionate use in a small cohort of patients.

“The symptomatic treatment of myotonia and myalgia in patients with dystrophic and non-dystrophic myotonias is often not satisfactory.

Some patients anecdotally report symptoms’ relief through consumption of cannabis.

METHODS:

A combination of cannabidiol and tetrahydrocannabinol (CBD/THC) was prescribed as compassionate use to six patients (four patients with myotonic dystrophy types 1 and 2, and 2 patients with CLCN1-myotonia) with therapy-resistant myotonia and myalgia. CBD/THC oil was administered on a low dose in the first 2 weeks and adjusted to a higher dose in the following 2 weeks. Myotonia behaviour scale (MBS), hand-opening time, visual analogue scales (VAS) for myalgia and myotonia, and fatigue and daytime sleepiness severity scale (FSS, ESS) were performed weekly to monitor treatment response.

RESULTS:

All patients reported an improvement of myotonia especially in weeks 3 and 4 of treatment: MBS improved of at least 2 points in all patients, the hand-opening time variously improved in 5 out of 6 patients. Chronic myalgia was reported by both DM2 patients at baseline, one of them experienced a significant improvement of myalgia under treatment. Some gastrointestinal complaints, as abdominal pain and diarrhoea, improved in 3 patients; however, 4 out of 6 patients reported new-onset constipation. No other relevant side effect was noticed.

CONCLUSIONS:

These first empirical results suggest a potentially beneficial role of CBD/THC in alleviating myotonia and should encourage further research in this field including a randomized-controlled trial on larger cohorts.”

https://www.ncbi.nlm.nih.gov/pubmed/31655890

https://link.springer.com/article/10.1007%2Fs00415-019-09593-6

“Myotonia is a medical term that refers to a neuromuscular condition in which the relaxation of a muscle is impaired.” https://www.ninds.nih.gov/Disorders/All-Disorders/Myotonia-Information-Page

Effects of Cannabis and Its Components on the Retina: A Systematic Review.

 Publication Cover“Cannabis is the most prevalent drug in the world and its consumption is growing. Cannabinoid receptors are present in the human central nervous system. Recent studies show evidence of the effects of cannabinoids on the retina, and synthesizing the results of these studies may be relevant for ophthalmologists. Thus, this review adopts standardized, systematic review methodology to investigate the effects of exposure to cannabis and components on the retina.

RESULTS:

We retrieved 495 studies, screened 229 studies, assessed 52 studies for eligibility, and included 16 studies for qualitative analysis. The cannabinoids most frequently investigated were delta-9-tetrahydrocannabinol (THC), abnormal cannabidiol, synthetic cannabinoid, and cannabidiol (CDB). The outcomes most studied were neuroretinal dysfunction, followed by vascular effects. The studies also included investigation of neuroprotective and anti-inflammatory effects and teratogenic effects.

CONCLUSIONS:

This review suggests that cannabinoids may have an important role in retinal processing and function.”

https://www.ncbi.nlm.nih.gov/pubmed/31648567

https://www.tandfonline.com/doi/abs/10.1080/15569527.2019.1685534?journalCode=icot20

Medical Cannabis for the Primary Care Physician.

 SAGE Journals“Medical cannabis use is common in the United States and increasingly more socially acceptable. As more patients seek out and acquire medical cannabis, primary care physicians will be faced with a growing number of patients seeking information on the indications, efficacy, and safety of medical cannabis. We present a case of a patient with several chronic health conditions who asks her primary care provider whether she should try medical cannabis. We provide a review of the pharmacology of medical cannabis, the state of evidence regarding the efficacy of medical cannabis, variations in the types of medical cannabis, and safety monitoring considerations for the primary care physician.”

https://www.ncbi.nlm.nih.gov/pubmed/31646929

https://journals.sagepub.com/doi/10.1177/2150132719884838

Acute and residual effects of smoked cannabis: Impact on driving speed and lateral control, heart rate, and self-reported drug effects

 Drug and Alcohol Dependence“Although driving under the influence of cannabis is increasingly common among young adults, little is known about residual effects on driver behavior.

This study examined acute and residual effects of smoked cannabis on simulated driving performance of young cannabis users.

Methods

In this double-blind, placebo-controlled, parallel-group randomized clinical trial, cannabis users (1-4 days/week) aged 19-25 years were randomized with a 2:1 allocation ratio to receive active (12.5% THC) or placebo (0.009% THC) cannabis in a single 750 mg cigarette. A median split (based on whole-blood THC concentrations at the time of driving) was used to divide the active group into low and high THC groups. Our primary outcome was simulated driving performance, assessed 30 minutes and 24 and 48 hours after smoking. Secondary outcomes included blood THC concentrations, subjective drug effects, and heart rate.

Results

Ninety-six participants were randomized, and 91 were included in the final analysis (30 high THC, 31 low THC, 30 placebo). Mean speed (but not lateral control) significantly differed between groups 30 minutes after smoking cannabis (p ≤ 0.02); low and high THC groups decreased their speed compared to placebo. Heart rate, VAS drug effect and drug high increased significantly immediately after smoking cannabis and declined steadily after that. There was little evidence of residual effects in any of the measures.

Conclusion

Acutely, cannabis caused decreased speed, increased heart rate, and increases in VAS drug effect and drug high. There was no evidence of residual effects on these measures over the two days following cannabis administration.

Smoked cannabis (12.5% THC) led to an acute decrease in speed in young adults. There was no clear effect of smoked cannabis on lateral control. There was little evidence of residual effects of smoked cannabis on driving performance.”

https://www.sciencedirect.com/science/article/abs/pii/S0376871619304181

Cannabinoid receptor type 1 modulates the effects of polyunsaturated fatty acids on memory of stressed rats.

 Publication Cover“Memory and GABAergic activity in the hippocampus of stressed rats improve after n-3 polyunsaturated fatty acid (PUFA) supplementation.

On the other hand, cannabinoid receptor type 1 (CB1) strongly regulates inhibitory neurotransmission in the hippocampus. Speculation about a possible relation between stress, endocannabinoids, and PUFAs.

Here, we examined whether the effects of PUFAs on memory of chronically stressed rats depends on pharmacological manipulation of CB1 receptors.

Memory improved in the stressed rats that were treated with AM251 and/or n-3 PUFAs. Supplementation with n-6 PUFAs did not affect memory of stressed rats, but co-treatment with AM251 improved it, while co-treatment with WIN55,212-2 did not affect memory.

Our results demonstrate that activity of the CB1 receptors may modulate the effects of PUFAs on memory of stressed rats. This study suggests that endocannabinoids and PUFAs can both become a singular system by being self-regulated in limbic areas, so they control the effects of stress on the brain.”

https://www.ncbi.nlm.nih.gov/pubmed/31637966

https://www.tandfonline.com/doi/abs/10.1080/1028415X.2019.1659561?journalCode=ynns20

Ligands of the CB2 cannabinoid receptors augment activity of the conventional antidepressant drugs in the behavioural tests in mice.

Behavioural Brain Research“Although a lot of information can be found on the specific dual role of the endocannabinoid system in the emotional-related responses, little is known whether stimulation or inhibition of the CB receptors may affect the activity of the frequently prescribed antidepressant drugs.

Our interests have been particularly focused on the potential influence of the CB2 receptors, as the ones whose central effects are relatively poorly documented when compared to the central effects of the CB1 receptors. Therefore, we evaluated the potential interaction between the CB2 receptor ligands (i.e., JWH133 – CB2 receptor agonist and AM630 – CB2 receptor inverse agonist) and several common antidepressant drugs that influence the monoaminergic system (i.e., imipramine, escitalopram, reboxetine).

Summarizing, the results of the present study revealed that both activation and inhibition of the CB2 receptor function have a potential to strengthen the antidepressant activity of drugs targeting the monoaminergic system. Most probably, the described interaction has a pharmacodynamic background.”

https://www.ncbi.nlm.nih.gov/pubmed/31626848

“Interplay between CB2 receptor ligands and antidepressants is pharmacodynamic in nature.”

https://www.sciencedirect.com/science/article/pii/S0166432819311891?via%3Dihub

Neuropeptide Y and cannabinoids interaction in the amygdala after exposure to shock and reminders model of PTSD.

Neuropharmacology“Modulation of cannabinoid and neuropeptide Y (NPY) receptors may offer therapeutic benefits for post-traumatic stress disorder (PTSD).

In this study, we aimed to investigate the functional interaction between these systems in the basolateral amygdala (BLA) in a rat model of PTSD.

The findings suggest that the functional interaction between the eCB and NPY1 systems is complex and provide a rationale for exploring novel therapeutic strategies that target the cannabinoid and NPY systems for stress-related diseases.”

https://www.ncbi.nlm.nih.gov/pubmed/31622603

https://www.sciencedirect.com/science/article/pii/S0028390819303661?via%3Dihub

‘Standard THC Units’: a proposal to standardise dose across all cannabis products and methods of administration.

Publication cover image“Cannabis products are becoming increasingly diverse, and they vary considerably in concentrations of ∆9 -tetrahydrocannabinol (THC) and cannabidiol (CBD). Higher doses of THC can increase the risk of harm from cannabis, while CBD may partially offset some of these effects. Lower Risk Cannabis Use Guidelines currently lack recommendations based on quantity of use, and could be improved by implementing standard units. However, there is currently no consensus on how units should be measured or standardised across different cannabis products or methods of administration.

ARGUMENT:

Existing proposals for standard cannabis units have been based on specific methods of administration (e.g. joints) and these may not capture other methods including pipes, bongs, blunts, dabbing, vaporizers, vape pens, edibles and liquids. Other proposals (e.g. grams of cannabis) cannot account for heterogeneity in THC concentrations across different cannabis products. Similar to alcohol units, we argue that standard cannabis units should reflect the quantity of active pharmacological constituents (dose of THC). On the basis of experimental and ecological data, public health considerations, and existing policy we propose that a ‘Standard THC Unit’ should be fixed at 5 milligrams of THC for all cannabis products and methods of administration. If supported by sufficient evidence in future, consumption of Standard CBD Units might offer an additional strategy for harm reduction.

CONCLUSIONS:

Standard THC Units can potentially be applied across all cannabis products and methods of administration to guide consumers and promote safer patterns of use.”

https://www.ncbi.nlm.nih.gov/pubmed/31606008

https://onlinelibrary.wiley.com/doi/abs/10.1111/add.14842