BLOCKING CANNABINOID CB1 RECEPTORS FOR THE TREATMENT OF NICOTINE DEPENDENCE: INSIGHTS FROM PRECLINICAL AND CLINICAL STUDIES

Abstract

“Tobacco use is one of the leading preventable causes of death in developed countries. Since existing medications are only partially effective in treating tobacco smokers, there is a great need for improved medications for smoking cessation. It has been recently proposed that cannabinoid CB(1) receptor antagonists represent a new class of therapeutic agents for drug dependence, and notably, nicotine dependence. Here, we will review current evidence supporting the use of this class of drugs for smoking cessation treatment. Pre-clinical studies indicate that nicotine exposure produces changes in endocannabinoid content in the brain. In experimental animals, N-piperidinyl-5-(4-chlorophenyl)-1-(2,4-dichlorophenyl)-4-methylpyrazole-3-carboxamide (rimonabant, SR141716) and N-(piperidin-1-yl)-5-(4-iodophenyl)-1-(2,4-dichlorophenyl)-4-methyl-1H-pyrazole-3-carboxamide (AM251), two cannabinoid CB(1) receptor antagonists, block nicotine self-administration behavior, an effect that may be related to the blockade of the dopamine-releasing effects of nicotine in the brain. Rimonabant also seems efficacious in decreasing the influence of nicotine-associated stimuli over behavior, suggesting that it may act on two distinct neuronal pathways, those implicated in drug-taking behavior and those involved in relapse phenomena. The utility of rimonabant has been evaluated in several clinical trials. It seems that rimonabant is an efficacious treatment for smoking cessation, although its efficacy does not exceed that of nicotine-replacement therapy and its use may be limited by emotional side effects (nausea, anxiety and depression, mostly). Rimonabant also appears to decrease relapse rates in smokers. These findings indicate significant, but limited, utility of rimonabant for smoking cessation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2752688/

Cannabinoid CB1 Receptor Antagonists as Promising New Medications for Drug Dependence

 “This review examines the development of cannabinoid CB1 receptor antagonists as a new class of therapeutic agents for drug addiction. Abused drugs [alcohol, opiates, Δ9-tetrahydrocannabinol (Δ9-THC), and psychostimulants, including nicotine] elicit a variety of chronically relapsing disorders by interacting with endogenous neural pathways in the brain. In particular, they share the common property of activating mesolimbic dopamine brain reward systems, and virtually all abused drugs elevate dopamine levels in the nucleus accumbens. Cannabinoid CB1 receptors are expressed in this brain reward circuit and modulate the dopamine-releasing effects of Δ9-THC and nicotine. Rimonabant (SR141716), a CB1 receptor antagonist, blocks both the dopamine-releasing and discriminative and rewarding effects of Δ9-THC in animals. Blockade of CB1 receptor activity by genetic invalidation also decreases rewarding effects of opiates and alcohol in animals. Although CB1 receptor blockade is generally ineffective in reducing the self-administration of cocaine in rodents and primates, it reduces the reinstatement of extinguished cocaine-seeking behavior produced by cocaine-associated conditioned stimuli and cocaine-priming injections. Likewise, CB1 receptor blockade is effective in reducing nicotine-seeking behavior induced by re-exposure to nicotine-associated stimuli. Some of these findings have been recently validated in humans. In clinical trials, Rimonabant blocks the subjective effects of Δ9-THC in humans and prevents relapse to smoking in exsmokers. Findings from both clinical and preclinical studies suggest that ligands blocking CB1 receptors offer a novel approach for patients suffering from drug dependence that may be efficacious across different classes of abused drugs.”

“Cannabinoid CB1 Receptor Blockade: A Step Forward in Drug-Dependence Therapy?”

“Despite advances in the understanding of neurobiological and behavioral mechanisms that lead to drug dependence over the last 20 years, no effective treatment is yet available for cocaine or Δ9-THC dependence. Moreover, medications available for ethanol, nicotine, or opioid dependence are ineffective in many subjects. For example, the rate of smoking cessation by subjects entering into clinical trials that combine effective medication and behavioral and cognitive therapy is around 30% at one year; most subjects relapse. Cannabinoid CB1 receptor antagonists represent a potentially useful tool not only for blocking the direct reinforcing effects of Δ9-THC, nicotine, and ethanol, but also for preventing relapse to the use of various drugs of abuse, including cocaine, methamphetamine, and heroin. In addition, environmental stimuli seem to be one of the major factors that can trigger relapse to drug use in abstinent drug abusers. This process is not only critical for psychostimulant abuse, but also for nicotine and heroin abuse, and probably for other drugs of abuse such as ethanol. By reducing the motivational effects of drug-related environmental stimuli, cannabinoid CB1 receptor antagonists might, therefore, provide an effective means for preventing relapse to drug-seeking behavior in abstinent drug abusers, providing a promising new tool for the treatment of dependence on a wide range of abused drugs.”

http://jpet.aspetjournals.org/content/312/3/875.long

The endocannabinoid system as a target for the treatment of cannabis dependence

“Cannabinoid replacement therapy and CB1 receptor antagonism are two potential treatments for cannabis dependence that are currently under investigation. However, abuse liability and adverse side effects may limit the scope of each of these approaches. A potential alternative stems from the recognition that (i) frequent cannabis use may cause an adaptive downregulation of brain endocannabinoid signaling, and (ii) that genetic traits that favor hyperactivity of the endocannabinoid system in humans may decrease susceptibility to cannabis dependence. These findings suggest in turn that pharmacological agents that elevate brain levels of the endocannabinoid neurotransmitters, anandamide and 2-arachidonoylglycerol (2-AG), might alleviate cannabis withdrawal and dependence. One such agent, the fatty-acid amide hydrolase (FAAH) inhibitor URB597, selectively increases anandamide levels in the brain of rodents and primates. Preclinical studies show that URB597 produces analgesic, anxiolytic-like and antidepressant-like effects in rodents, which are not accompanied by overt signs of abuse liability. In this article, we review evidence suggesting that (i) cannabis influences brain endocannabinoid signaling; and (ii) FAAH inhibitors such as URB597 might offer a possible therapeutic avenue for the treatment of cannabis withdrawal.”

“Direct modulation of CB1receptors as a treatment for cannabis dependence”

“Even though, as we have seen above, direct activation of CB1 receptors may yield variable behavioral responses, low-dosage oral Δ9-THC has shown promise in the management of human cannabis withdrawal. The rationale for this approach is that controlled replacement of Δ9-THC for smoked cannabis may reduce the severity of withdrawal symptoms and allow a dependent individual to remain abstinent. Additionally, given that dependent subjects are experienced with cannabis, and Δ9-THC is administered at low doses, administration of the latter is unlikely to result in the anxiety responses observed with inexperienced users or high dosages. Consistent with this idea, two independent clinical studies have shown that low-dose oral Δ9-THC attenuates withdrawal symptom scores and is minimally intoxicating in non-treatment seeking daily cannabis users.””

“Several therapeutic modalities are currently being considered to treat cannabis dependence, including activation or deactivation of CB1receptors. While these stategies show promise in measures of cannabis withdrawal and abstinence, they may also create problems of abuse liability or adverse emotional effects. An additional approach might be to enhance endogenous anandamide signaling using agents that attenuate the deactivation of this endocannabinoid transmitter.”

“Increasing anandamide signaling with deactivation inhibitors, such as the FAAH blocker URB597, potentiates stress coping behaviors in animals, indicating a role for anandamide in physiopathological context of stress-related responses. Similarly, elevation of anandamide in specific brain regions opposes the anhedonic effects of stress and promotes normal positive responses to pleasurable stimuli in rodents. It is reasonable to hypothesize that these effects could act to blunt the negative affect and stress, which is common during cannabis withdrawal, thus allowing cannabis dependent individuals to successfully abstain from drug use.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2647947/

Antiproliferative Effects of Cannabinoid Agonists on Deep Infiltrating Endometriosis

“Deep infiltrating endometriosis (DIE) is characterized by chronic pain, hyperproliferation of endometriotic cells and fibrosis. Since cannabinoids are endowed with antiproliferative and antifibrotic properties, in addition to their psychogenic and analgesic effects, cannabinoid agonists have been evaluated in DIE both in vitro and in vivo. The in vitro effects of the cannabinoid agonist WIN 55212-2 were evaluated on primary endometriotic and endometrial stromal and epithelial cell lines extracted from patients with or without DIE. Cell proliferation was determined by thymidine incorporation and production of reactive oxygen species by spectrofluorometry. ERK and Akt pathways were studied by immunoblotting. Immunoblotting of α-smooth muscle actin was studied as evidence of myofibroblastic transformation. The in vivo effects of WIN 55212-2 were evaluated on Nude mice implanted with human deep infiltrating endometriotic nodules. The in vitro treatment of stromal endometriotic cells by WIN 55212-2 decreased cell proliferation, reactive oxygen species production, and α-smooth muscle actin expression. The decrease in cell proliferation induced by WIN 55212-2 was not associated with a decrease in ERK activation, but was associated with the inhibition of Akt activation. WIN 55212-2 abrogated the growth of endometriotic tissue implanted in Nude mice. Cannabinoid agonists exert anti-proliferative effects on stromal endometriotic cells linked to the inhibition of the Akt pathway. These beneficial effects of cannabinoid agonists on DIE have been confirmed in vivo.”

“The cannabinoids are well known for their psychogenic effects and their role in inflammation and immunity. They are also endowed with properties that can be used in the control of three major aspects of DIE: hyperproliferation, fibrosis, and chronic pain. Because of their implication in proliferation, apoptosis, and angiogenesis, the cannabinoids control cell growth. Their antiproliferative effects result from the inhibition of growth factors and the deregulation of such signaling pathways as Ras-Raf-MKKK1-ERK1/2, PI3K-Akt/PKB-mTOR and c-Jun N-terminal kinase-MAPK. These mechanisms have suggested new targets in cancer treatment and also in endometriosis, since endometriotic cells have a hyperproliferative phenotype and pro-angiogenic properties. In addition, several experimental studies have reported an antifibrotic role of cannabinoid agonists. If such antifibrotic effect of cannabinoid agonists could be demonstrated in DIE it would allow a less extensive surgery. Finally, cannabinoids have analgesic properties and have been used for a long time in treating chronic pain.

“Therefore, we have evaluated the effects of cannabinoid agonists in vitro on cells extracted from biopsies of deep infiltrating endometriosis and in vivo on a mouse model of endometriosis. We conclude from our data that cannabinoid agonists represent a promising approach in the treatment of DIE.”

“In conclusion, WIN 55212-2 has in vitro antiproliferative and antifibrotic effects in deep infiltrating endometriotic cells. The antiproliferative effect is linked to the inactivation of the Akt pathway. The effectiveness of WIN 55212-2 in vitro, confirmed in vivo in a mouse model of DIE, suggests that the cannabinoid agonists represent a promising therapeutic approach in the treatment of DIE.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2993285/

 

A novel nonpsychotropic cannabinoid, HU-211, in the treatment of experimental pneumococcal meningitis.

Abstract

“Typical features of pneumococcal meningitis have been demonstrated in rats inoculated with Streptococcus pneumoniae. HU-211, a novel noncompetitive N-methyl-D-aspartate antagonist recently demonstrated to inhibit tumor necrosis factor-alpha production under various conditions, improves recovery in some experimental models of brain injury. The present study tested the efficacy of HU-211 in combination with antimicrobial therapy in reducing brain damage in experimental pneumococcal meningitis. S. pneumoniae-infected rats were treated with saline alone, ceftriaxone alone, or with combination of ceftriaxone and HU-211 18 h after inoculation of the bacteria. Brain edema and blood-brain barrier impairment 48 h after infection were significantly (P<.05) reduced suggest that HU-211 when given concomitantly with antibiotics attenuates brain damage in the rat model of pneumococcal meningitis.”

http://www.ncbi.nlm.nih.gov/pubmed/8627042

Cannabidiol reduces host immune response and prevents cognitive impairments in Wistar rats submitted to pneumococcal meningitis.

 European Journal of Pharmacology “Pneumococcal meningitis is a life-threatening disease characterized by an acute infection affecting the pia matter, arachnoid and subarachnoid space. The intense inflammatory response is associated with a significant mortality rate and neurologic sequelae, such as, seizures, sensory-motor deficits and impairment of learning and memory.

The aim of this study was to evaluate the effects of acute and extended administration of cannabidiol on pro-inflammatory cytokines and behavioral parameters in adult Wistar rats submitted to pneumococcal meningitis.

The extended administration of cannabidiol at different doses reduced the TNF-α level in frontal cortex. Prolonged treatment with canabidiol, 10mg/kg, prevented memory impairment in rats with pneumococcal meningitis.

Although descriptive, our results demonstrate that cannabidiol has anti-inflammatory effects in pneumococcal meningitis and prevents cognitive sequel.”  https://www.ncbi.nlm.nih.gov/pubmed/23085269

“Although descriptive, our results demonstrate that chronic treatment with CBD plays an anti-inflammatory role in pneumococcal meningitis. Furthermore, it prevents cognitive damage, possibly representing a new pharmacological approach towards pneumococcal meningitis.” https://www.sciencedirect.com/science/article/pii/S0014299912008485?via%3Dihub

Molecular biology of cannabinoid receptors.

Abstract

“During the last decade, research on the molecular biology and genetics of cannabinoid receptors has led to a remarkable progress in understanding of the endogenous cannabinoid system, which functions in a plethora of physiological processes in the animal. At present, two types of cannabinoid receptors have been cloned from many vertebrates, and three endogenous ligands (the endocannabinoids arachidonoyl ethanolamide, 2-arachidonoyl glycerol and 2-arachidonoyl-glycerol ether) have been characterized. Cannabinoid receptor type 1 (CB(1)) is expressed predominantly in the central and peripheral nervous system, while cannabinoid receptor type 2 (CB(2)) is present almost exclusively in immune cells. Cannabinoid receptors have not yet been cloned from invertebrates, but binding proteins for endocannabinoids, endocannabinoids and metabolic enzyme activity have been described in a variety of invertebrates except for molting invertebrates such as Caenorhabditis elegans and Drosophila. In the central nervous system of mammals, there is strong evidence emerging that the CB(1) and its ligands comprise a neuromodulatory system functionally interacting with other neurotransmitter systems. Furthermore, the presynaptic localization of CB(1) together with the results obtained from electrophysiological experiments strengthen the notion that in cerebellum and hippocampus and possibly in other regions of the central nervous system, endocannabinoids may act as retrograde messengers to suppress neurotransmitter release at the presynaptic site. Many recent studies using genetically modified mouse lines which lack CB(1) and/or CB(2) finally could show the importance of cannabinoid receptors in animal physiology and will contribute to unravel the full complexity of the cannabinoid system.”

http://www.ncbi.nlm.nih.gov/pubmed/12052031

Cannabinoid signalling regulates inflammation and energy balance: the importance of the brain-gut axis.

Abstract

“Energy balance is controlled by centres of the brain which receive important inputs from the gastrointestinal tract, liver, pancreas, adipose tissue and skeletal muscle, mediated by many different signalling molecules. Obesity occurs when control of energy intake is not matched by the degree of energy expenditure. Obesity is not only a state of disordered energy balance it is also characterized by systemic inflammation. Systemic inflammation is triggered by the leakage of bacterial lipopolysaccharide through changes in intestinal permeability. The endocannabinoid system, consisting of the cannabinoid receptors, endogenous cannabinoid ligands and their biosynthetic and degradative enzymes, plays vital roles in the control of energy balance, the control of intestinal permeability and immunity. In this review we will discuss how the endocannabinoid system, intestinal microbiota and the brain-gut axis are involved in the regulation of energy balance and the development of obesity-associated systemic inflammation. Through direct and indirect actions throughout the body, the endocannabinoid system controls the development of obesity and its inflammatory complications.”

http://www.ncbi.nlm.nih.gov/pubmed/22269477

[The role of the endocannabinoid system in the regulation of endocrine function and in the control of energy balance in humans].

Abstract

“The endocannabinoid system has been recently recognized as an important modulatory system in the function of brain, endocrine, and immune tissues. It appears to play a very important regulatory role in the secretion of hormones related to reproductive functions and response to stress. The important elements of this system are: endocannabinoid receptors (types CB1 and CB2), their endogenous ligands (N-arachidonoylethanolamide, 2-arachidonoyl glycerol), enzymes involved in their synthesis and degradation, as well as cannabinoid antagonists. In humans this system also controls energy homeostasis and mainly influences the function of the food intake centers of the central nervous system and gastrointestinal tract activity. The endocannabinoid system regulates not only the central and peripheral mechanisms of food intake, but also lipids synthesis and turnover in the liver and adipose tissue as well as glucose metabolism in muscle cells. Rimonabant, a new and selective central and peripheral cannabinoid-1 receptor (CB1) blocker, has been shown to reduce body weight and improve cardiovascular risk factor (metabolic syndrome) in obese patients by increasing HDL-cholesterol and adiponectin blood levels as well as decreasing LDL-cholesterol, leptin, and C-reactive protein (a proinflammatory marker) concentrations. It is therefore possible to speculate about a future clinical use of CB1 antagonists, as a means of improving gonadotrophin pulsatility and fertilization capacity as well as the prevention of cardiovasculary disease and type 2 diabetes mellitus. Drugs acting as agonists of CB1 receptors (Dronabinol, Dexanabinol) are currently proposed for evaluation as drugs to treat neurodegenerative disorders (Alzheimer’s and Parkinson’s diseases), epilepsy, anxiety, and stroke.”

http://www.ncbi.nlm.nih.gov/pubmed/17369778