WHO proposes rescheduling cannabis to allow medical applications

Image result for the bmj journal“The World Health Organization has proposed rescheduling cannabis within international law to take account of the growing evidence for medical applications of the drug, reversing its position held for the past 60 years that cannabis should not be used in legitimate medical practice.”

https://www.bmj.com/content/364/bmj.l574

“WHO RECOMMENDS RESCHEDULING #CANNABIS IN INTERNATIONAL LAW FOR FIRST TIME IN HISTORY. The World Health Organization has suggested that cannabis should be downgraded, or “rescheduled,” given the mounting evidence showing that the drug could prove beneficial in treating a number of health problems. This marks a significant change in WHO’s position, which for the last 60 years has said that cannabis should not be used in medicine, according to an article in the BMJ.” https://www.newsweek.com/who-recommends-rescheduling-cannabis-international-law-first-time-history-1324613

Therapeutic targeting of HER2-CB2R heteromers in HER2-positive breast cancer.

 Proceedings of the National Academy of Sciences: 116 (6)

“Although human epidermal growth factor receptor 2 (HER2)-targeted therapies have dramatically improved the clinical outcome of HER2-positive breast cancer patients, innate and acquired resistance remains an important clinical challenge. New therapeutic approaches and diagnostic tools for identification, stratification, and treatment of patients at higher risk of resistance and recurrence are therefore warranted.

Here, we unveil a mechanism controlling the oncogenic activity of HER2: heteromerization with the cannabinoid receptor CB2R. We show that HER2 physically interacts with CB2R in breast cancer cells, and that the expression of these heteromers correlates with poor patient prognosis.

The cannabinoid Δ9-tetrahydrocannabinol (THC) disrupts HER2-CB2R complexes by selectively binding to CB2R, which leads to (i) the inactivation of HER2 through disruption of HER2-HER2 homodimers, and (ii) the subsequent degradation of HER2 by the proteasome via the E3 ligase c-CBL. This in turn triggers antitumor responses in vitro and in vivo. Selective targeting of CB2R transmembrane region 5 mimicked THC effects.

Together, these findings define HER2-CB2R heteromers as new potential targets for antitumor therapies and biomarkers with prognostic value in HER2-positive breast cancer.”

https://www.ncbi.nlm.nih.gov/pubmed/30733293

https://www.pnas.org/content/early/2019/02/06/1815034116

“Pharmacological activation of cannabinoid receptors elicits antitumoral responses in different cancer models. Our findings reveal an unprecedented role of CB2 as a pivotal regulator of HER2 pro-oncogenic signaling in breast cancer” http://www.ncbi.nlm.nih.gov/pubmed/25855725
“Extensive preclinical research has demonstrated that cannabinoids, the active ingredients of Cannabis sativa, trigger antitumor responses in different models of cancer. Together, our results suggest that standardized cannabis drug preparations, rather than pure cannabinoids, could be considered as part of the therapeutic armamentarium to manage breast cancer.” https://www.ncbi.nlm.nih.gov/pubmed/29940172

A Review of Human Studies Assessing Cannabidiol’s (CBD) Therapeutic Actions and Potential.

Publication cover image

“Cannabidiol (CBD) is a highly touted product for many different disorders among the lay press. Numerous CBD products are available, ranging from a US Food and Drug Administration (FDA)-approved product called Epidiolex to products created for medical marijuana dispensaries and products sold in smoke shops, convenience stores, and over the Internet.

The legal status of the non-FDA-approved products differs depending on the source of the CBD and the state, while the consistency and quality of the non-FDA-approved products vary markedly. Without independent laboratory verification, it is impossible to know whether the labeled CBD dosage in non-FDA-approved CBD products is correct, that the delta-9-tetrahydrocannabinol content is <0.3%, and that it is free of adulteration and contamination.

On the Internet, CBD has been touted for many ailments for which it has not been studied, and in those diseases with evaluable human data, it generally has weak or very weak evidence. The control of refractory seizures is a clear exception, with strong evidence of CBD’s benefit. Acute CBD dosing before anxiety-provoking events like public speaking and the chronic use of CBD in schizophrenia are promising but not proven. CBD is not risk free, with adverse events (primarily somnolence and gastrointestinal in nature) and drug interactions. CBD has been shown to increase liver function tests and needs further study to assess its impact on suicidal ideation.”

https://www.ncbi.nlm.nih.gov/pubmed/30730563

https://accp1.onlinelibrary.wiley.com/doi/abs/10.1002/jcph.1387

Cannabinoids Reduce Inflammation but Inhibit Lymphocyte Recovery in Murine Models of Bone Marrow Transplantation.

ijms-logo

“Cannabinoids, the biologically active constituents of Cannabis, have potent neuronal and immunological effects. However, the basic and medical research dedicated to medical cannabis and cannabinoids is limited. The influence of these treatments on hematologic reconstitution and on the development of graft versus host disease (GVHD) after bone marrow transplantation (BMT) is largely unknown.

In this research, we compared the influence of D9 tetrahydrocannabinol (THC) and cannabidiol (CBD) on lymphocyte activation in vitro and in murine BMT models.

Our in vitro results demonstrate that these treatments decrease activated lymphocyte proliferation and affect cytokine secretion. We also discovered that CBD and THC utilize different receptors to mediate these effects. In vivo, in a syngeneic transplantation model, we demonstrate that all treatments inhibit lymphocyte reconstitution and show the inhibitory role of the cannabinoid receptor type 2 (CB2) on lymphocyte recovery.

Although pure cannabinoids exhibited a superior effect in vitro, in an allogeneic (C57BL/6 to BALB/c) BMT mouse model, THC-high and CBD-high cannabis extracts treatment reduced the severity of GVHD and improved survival significantly better than the pure cannabinoids.

Our results highlights the complexity of using cannabinoids-based treatments and the need for additional comparative scientific results.”

https://www.ncbi.nlm.nih.gov/pubmed/30720730

https://www.mdpi.com/1422-0067/20/3/668

An Update of Current Cannabis-Based Pharmaceuticals in Pain Medicine.

 

“Cannabis users have long reported therapeutic properties of the plant for a variety of conditions, some of which include nausea, emesis, seizures, cancer, neurogenic diseases and pain control. Research has elucidated many cannabinoid pharmacodynamic and pharmacokinetic properties, expanding the potential use of cannabinoids as a medical therapy.

Due to the inconsistent delivery and control of the active components involved with smoking, pharmaceutical companies are investigating and prioritizing routes other than smoke inhalation for therapeutic use of cannabinoids. In this relatively new field of pharmaceutical development, ongoing drug development promises great benefit from targeted endocannabinoid receptor agonism.

Available in Canada and Europe, nabiximols, a specific extract from the Cannabis plant, has demonstrated great benefit in the treatment of pain related to spasticity in multiple sclerosis, cancer and otherwise chronic pain conditions.

The cannabidiol oral solution Epidiolex®, which is available in the USA, is indicated for management of refractory epilepsy but may offer therapeutic relief to chronic pain conditions as well.

Current investigative drugs, such as those developed by Cara Therapeutics and Zynerba Pharmaceuticals, are synthetic cannabinoids which show promise to specifically target neuropsychiatric conditions and chronic pain symptoms such as neuropathy and allodynia.

The objective of this review is to provide clinicians with an update of currently available and promising developmental cannabis pharmaceutical derivatives which may stand to greatly benefit patients with otherwise difficult-to-treat chronic conditions.”

https://www.ncbi.nlm.nih.gov/pubmed/30721403

https://link.springer.com/article/10.1007%2Fs40122-019-0114-4

Cannabidiol Increases Proliferation, Migration, Tubulogenesis, and Integrity of Human Brain Endothelial Cells through TRPV2 Activation.

Molecular Pharmaceutics

“The effect of cannabidiol (CBD), a high-affinity agonist of the transient receptor potential vanilloid-2 (TRPV2) channel, has been poorly investigated in human brain microvessel endothelial cells (BMEC) forming the blood-brain barrier (BBB). TRPV2 expression and its role on Ca2+ cellular dynamics, trans-endothelial electrical resistance (TEER), cell viability and growth, migration, and tubulogenesis were evaluated in human primary cultures of BMEC (hPBMEC) or in the human cerebral microvessel endothelial hCMEC/D3 cell line. Abundant TRPV2 expression was measured in hCMEC/D3 and hPBMEC by qRT-PCR, Western blotting, nontargeted proteomics, and cellular immunofluorescence studies. Intracellular Ca2+ levels were increased by heat and CBD and blocked by the nonspecific TRP antagonist ruthenium red (RR) and the selective TRPV2 inhibitor tranilast (TNL) or by silencing cells with TRPV2 siRNA. CBD dose-dependently induced the hCMEC/D3 cell number (EC50 0.3 ± 0.1 μM), and this effect was fully abolished by TNL or TRPV2 siRNA. A wound healing assay showed that CBD induced cell migration, which was also inhibited by TNL or TRPV2 siRNA. Tubulogenesis of hCMEC/D3 cells in 3D matrigel cultures was significantly increased by 41 and 73% after a 7 or 24 h CBD treatment, respectively, and abolished by TNL. CBD also increased the TEER of hPBMEC monolayers cultured in transwell, and this was blocked by TNL. Our results show that CBD, at extracellular concentrations close to those observed in plasma of patients treated by CBD, induces proliferation, migration, tubulogenesis, and TEER increase in human brain endothelial cells, suggesting CBD might be a potent target for modulating the human BBB.”

https://www.ncbi.nlm.nih.gov/pubmed/30721081

https://pubs.acs.org/doi/10.1021/acs.molpharmaceut.8b01252

Marijuana smoking and markers of testicular function among men from a fertility centre

Image result for oxford human reproduction

“Men who had ever smoked marijuana had significantly higher sperm concentration than men who had never smoked marijuana after adjusting for potential confounders.

These findings are not consistent with a deleterious effect of marijuana on testicular function.”

https://www.ncbi.nlm.nih.gov/pubmed/30726923

https://academic.oup.com/humrep/advance-article-abstract/doi/10.1093/humrep/dez002/5307080?redirectedFrom=fulltext

“SMOKING MARIJUANA APPEARS TO UP MEN’S SPERM COUNT—TO THE SURPRISE OF SCIENTISTS” https://www.newsweek.com/smoking-marijuana-appears-men-sperm-count-surprise-scientists-1318138

“Cannabis Smoking Associated With Higher Sperm Count, Study Finds”  https://www.bloomberg.com/news/articles/2019-02-06/cannabis-smoking-associated-with-higher-sperm-count-study-finds

“Smoking cannabis has unexpectedly been linked to greater fertility in men.” https://www.independent.ie/world-news/north-america/smoking-cannabis-can-make-men-more-fertile-say-scientists-37787137.html

Role of miRNA in the regulation of cannabidiol-mediated apoptosis in neuroblastoma cells.

Related image

“Neuroblastoma (NBL) is one of the most common childhood cancers that originate from the immature nerve cells of the sympathetic system. Studies with NBL cancers have also shown that miRNAs are dysregulated and may play a critical role in pathogenesis.

Cannabidiol (CBD) is a non-psychoactive compound found in marijuana which has been previously shown by our laboratory and others to induce apoptosis in cancer cells. However, there are no studies reported to test if CBD mediates these effects through regulation of miRNA.

In the current study, therefore, we investigated if CBD induces apoptosis in human NBL cell lines, SH SY5Y and IMR-32, and if it is regulated by miRNA.

Our data demonstrated that CBD induces apoptosis in NBL cells through activation of serotonin and vanilloid receptors. We also found that caspase-2 and -3 played an important role in the induction of apoptosis. CBD also significantly reduced NBL cell migration and invasion in vitro.

Furthermore, CBD blocked mitochondrial respiration and caused a shift in metabolism towards glycolysis. CBD altered the expression of miRNA specifically, down-regulating hsa-let-7a and upregulating hsa-mir-1972. Downregulation of let-7a increased expression of target caspase-3, and growth arrest specific-7 (GAS-7) genes. Upregulation of hsa-mir-1972 caused decreased expression of BCL2L1 and SIRT2 genes.

Together, our studies suggest that CBD-mediated apoptosis in NBL cells is regulated by miRNA.”

Recreational marijuana legalization and prescription opioids received by Medicaid enrollees.

Drug and Alcohol Dependence

“Medical marijuana use may substitute prescription opioid use, whereas nonmedical marijuana use may be a risk factor of prescription opioid misuse. This study examined the associations between recreational marijuana legalization and prescription opioids received by Medicaid enrollees. In models comparing eight states and DC, legalization was not associated with Schedule II opioid outcomes; having recreational marijuana legalization effective in 2015 was associated with reductions in number of prescriptions, total doses, and spending of Schedule III opioids by 32%, and 31%, respectively. In models comparing eight states and DC to six states with medical marijuana legalization, recreational marijuana legalization was not associated with any opioid outcome. No evidence suggested that recreational marijuana legalization increased prescription opioids received by Medicaid enrollees. There was some evidence in some states for reduced Schedule III opioids following the legalization.” https://www.ncbi.nlm.nih.gov/pubmed/30390550

https://www.sciencedirect.com/science/article/pii/S0376871618307567?via%3Dihub

Marijuana Consumption in Liver Transplant Recipients.

Liver Transplantation banner

“Marijuana is legalized for either medical or recreational use in over half of the United States and in Canada, but many transplant centers will not list patients who are using marijuana. However, the effect of marijuana on transplant outcomes remains unclear. Thus, we performed a retrospective analysis of all adult (≥18 years old) liver transplant patients treated at our center between 2007 and 2017. After adjustment, current tobacco users were over three times as likely to die within 5 years, compared to never users, but no difference was seen between current/former and never marijuana users. No significant differences in inpatient respiratory complications, reintubation, or >24 hours intubation was seen. Overall, pre-transplant marijuana use, past or current, does not appear to impact liver transplant outcomes; however, tobacco smoking remains detrimental.”

https://www.ncbi.nlm.nih.gov/pubmed/30693668

https://aasldpubs.onlinelibrary.wiley.com/doi/abs/10.1002/lt.25417