The cannabinoid WIN 55,212-2 prevents neuroendocrine differentiation of LNCaP prostate cancer cells.

“Neuroendocrine (NE) differentiation represents a common feature of prostate cancer and is associated with accelerated disease progression and poor clinical outcome. Nowadays, there is no treatment for this aggressive form of prostate cancer.

The aim of this study was to determine the influence of the cannabinoid WIN 55,212-2 (WIN, a non-selective cannabinoid CB1 and CB2 receptor agonist) on the NE differentiation of prostate cancer cells.

Taken together, we demonstrate that PI3K/Akt/AMPK might be an important axis modulating NE differentiation of prostate cancer that is blocked by the cannabinoid WIN, pointing to a therapeutic potential of cannabinoids against NE prostate cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/27324222

Cannabinoid receptor agonism suppresses tremor, cognition disturbances and anxiety-like behaviors in a rat model of essential tremor.

“Cognitive and motor disturbances are serious consequences of tremor induced by motor disorders. Despite a lack of effective clinical treatment, some potential therapeutic agents have been used to alleviate the cognitive symptoms in the animal models of tremor.

In the current study, the effects of WIN55, 212-2 (WIN), a cannabinoid receptor (CBR) agonist, on harmaline-induced motor and cognitive impairments was studied.

The neuroprotective and anxiolytic effects of WIN demonstrated in the current study can be offered cannabinoid receptor (CBR) agonism as a potential neuroprotective agent in the treatment of patients with tremor that manifest mental dysfunctions.”

http://www.ncbi.nlm.nih.gov/pubmed/27317835

Cannabinoids reverse the effects of early stress on neurocognitive performance in adulthood.

“Early life stress (ES) significantly increases predisposition to psychopathologies. Cannabinoids may cause cognitive deficits and exacerbate the effects of ES.

Nevertheless, the endocannabinoid system has been suggested as a therapeutic target for the treatment of stress- and anxiety-related disorders.

Here we examined whether cannabinoids administered during “late adolescence” (extensive cannabis use in humans at the ages 18-25) could reverse the long-term adverse effects of ES on neurocognitive function in adulthood.

WIN administered during late adolescence prevented these stress-induced impairments and reduced anxiety levels.

There is a crucial role of the endocannabinoid system in the effects of early life stress on behavior at adulthood.”

http://www.ncbi.nlm.nih.gov/pubmed/27317195

CB2 Cannabinoid Receptor As Potential Target against Alzheimer’s Disease.

“The CB2 receptor is one of the components of the endogenous cannabinoid system, a complex network of signaling molecules and receptors involved in the homeostatic control of several physiological functions. Accumulated evidence suggests a role for CB2 receptors in Alzheimer’s disease (AD) and indicates their potential as a therapeutic target against this neurodegenerative disease.

Levels of CB2 receptors are significantly increased in post-mortem AD brains, mainly in microglia surrounding senile plaques, and their expression levels correlate with the amounts of Aβ42 and β-amyloid plaque deposition.

Moreover, several studies on animal models of AD have demonstrated that specific CB2 receptor agonists, which are devoid of psychoactive effects, reduce AD-like pathology, resulting in attenuation of the inflammation associated with the disease but also modulating Aβ and tau aberrant processing, among other effects.

CB2 receptor activation also improves cognitive impairment in animal models of AD.

This review discusses available data regarding the role of CB2 receptors in AD and the potential usefulness of specific agonists of these receptors against AD.”

http://www.ncbi.nlm.nih.gov/pubmed/27303261

Indirect modulation of the endocannabinoid system by specific fractions of nutmeg total extract.

“Nutmeg [Myristica fragrans Houtt. (Myristicaceae)] has a long-standing reputation of psychoactivity. Anecdotal reports of nutmeg use as a cheap marijuana substitute, coupled to previous studies reporting a cannabimimetic-like action, suggest that nutmeg may interact with the endocannabinoid system.

The study provides the first piece of evidence that nutmeg interacts with the endocannabinoid system via inhibition of the endocannabinoid catabolizing enzymes. This mechanism provides insight into reported cannabis-like action as well as expands the potential therapeutic utility of nutmeg.”

http://www.ncbi.nlm.nih.gov/pubmed/27296774

Cannabinoids cool the intestine

Logo of nihpa

“Inflammatory bowel diseases (IBDs) such as ulcerative colitis and Crohn’s disease affects over a million people in the United States, with an estimated indirect cost from work loss of $3.6 billion annually. Many of these individuals suffer from pain, diarrhea and poor ability to digest their food, and in up to half of those with IBD, the disease is so severe that it ultimately requires surgery to remove the affected bowel segment.

Historically, marijuana has been used to treat diarrhea and has been advocated for the treatment of a variety of other gastrointestinal problems, including Crohn’s disease.

More recent pharmacological studies have clearly established that cannabinoids inhibit gastrointestinal motility and secretion by acting on CB1 receptors located on the terminals of both intrinsic and extrinsic submucosal neurons.

When administered to mice with chemically induced enteritis, cannabinoids also reduce inflammation and fluid accumulation in the gut.

Cannabinoids inhibit motility and secretion in the intestine.

They are now assigned the additional task of curbing excessive inflammation, suggesting that drugs targeting the endogenous cannabinoid system could be exploited for inflammatory bowel disease.

These findings may offer a new therapeutic approach to IBD.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2516444/

 

Inhibition of human tumour prostate PC-3 cell growth by cannabinoids R(+)-Methanandamide and JWH-015: Involvement of CB2

Logo of brjcancer

“We have previously shown that cannabinoids induce growth inhibition and apoptosis in prostate cancer PC-3 cells, which express high levels of cannabinoid receptor types 1 and 2 (CB1 and CB2). In this study, we investigated the role of CB2 receptor in the anti-proliferative action of cannabinoids and the signal transduction triggered by receptor ligation.

This study defines the involvement of CB2-mediated signalling in the in vivo and in vitro growth inhibition of prostate cancer cells and suggests that CB2 agonists have potential therapeutic interest and deserve to be explored in the management of prostate cancer.

Cannabinoids, the active components of Cannabis sativa and their derivatives, exert a wide spectrum of modulatory actions and pharmacological activities in the brain as well as in the periphery, and therefore, the therapeutic potential of cannabinoids has gained much attention during the past few years. One of the most exciting areas of current research in the therapeutic potential of cannabinoids is cancer.

Recent evidence suggests that cannabinoids are powerful regulators of cell growth and differentiation. They have been shown to exert anti-tumoural effects by decreasing viability, proliferation, adhesion and migration on various cancer cells, thereby suggesting the potential use of cannabinoids in the treatment of gliomas, prostate and breast cancers and malignancies of immune origin.

Overall, our data show a role for the cannabinoid receptor CB2 in the anti-tumour effect of cannabinoids on prostate cells in vitroand in vivo. There is considerable interest in the application of selective CB2 receptor agonists, which are devoid of typical marijuana-like psychoactive properties of CB1 agonists, for future cannabinoid-based anticancer therapies. Therefore, our findings point to the potential application of cannabinoid receptor type 2 ligands as anti-tumour agents in prostate cancer.”

Current Status and Prospects for Cannabidiol Preparations as New Therapeutic Agents.

“There is growing pressure for states and the federal government to legalize the use of cannabis products for medical purposes in the United States.

Sixteen states have legalized (or decriminalized possession of) products high in cannabidiol (CBD) and with restricted Δ9 -tetrahydrocannabinol (Δ9 -THC) content. In most of these states, the intent is for use in refractory epileptic seizures in children, but in a few states, the indications are broader.

The objectives of this review are to provide an overview of the pharmacology and toxicology of CBD; to summarize some of the regulatory, safety, and cultural issues relevant to the further exploitation of its antiepileptic or other pharmacologic activities; and to assess the current status and prospects for clinical development of CBD and CBD-rich preparations for medical use in the United States.

Unlike Δ9 -THC, CBD elicits its pharmacologic effects without exerting any significant intrinsic activity on the cannabinoid receptors (CB1 and CB2 ), whose activation results in the psychotropic effects characteristic of Δ9 -THC, and CBD possesses several pharmacologic activities that give it a high potential for therapeutic use.

CBD exhibits antiepileptic, anxiolytic, antipsychotic, and antiinflammatory properties.

In combination with Δ9 -THC, CBD has received regulatory approvals in several European countries and is currently under study in U.S. Food and Drug Administration-registered trials in the United States.

A number of states have passed legislation to allow for the use of CBD-rich, limited Δ9 -THC-content preparations of cannabis for certain pathologic conditions. CBD is currently being studied in several clinical trials and is at different stages of clinical development for various medical indications.

Judging from clinical findings reported so far, CBD and CBD-enriched preparations have great potential utility, but uncertainties regarding sourcing, long-term safety, abuse potential, and regulatory dilemmas remain.”

http://www.ncbi.nlm.nih.gov/pubmed/27285147

Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol.

“Mutations in brain isoforms of voltage-gated sodium channels have been identified in patients with distinct epileptic phenotypes. Clinically, these patients often do not respond well to classic anti-epileptics and many remain refractory to treatment.

Exogenous as well as endogenous cannabinoids have been shown to target voltage-gated sodium channels and cannabidiol has recently received attention for its potential efficacy in the treatment of childhood epilepsies.

In this study, we further investigated the ability of cannabinoids to modulate sodium currents from wild-type and epilepsy-associated mutant voltage-gated sodium channels.

These findings suggest that cannabidiol could be exerting its anticonvulsant effects, at least in part, through its actions on voltage-gated sodium channels, and resurgent current may be a promising therapeutic target for the treatment of epilepsy syndromes.”

http://www.ncbi.nlm.nih.gov/pubmed/27267376

Could cannabidiol be used as an alternative to antipsychotics?

“Schizophrenia is a mental disorder that affects close to 1% of the population. Individuals with this disorder often present signs such as hallucination, anxiety, reduced attention, and social withdrawal. Although antipsychotic drugs remain the cornerstone of schizophrenia treatment, they are associated with severe side effects.

Recently, the endocannabinoid system (ECS) has emerged as a potential therapeutic target for pharmacotherapy that is involved in a wide range of disorders, including schizophrenia.

Since its discovery, a lot of effort has been devoted to the study of compounds that can modulate its activity for therapeutic purposes.

Among them, cannabidiol (CBD), a non-psychoactive component of cannabis, shows great promise for the treatment of psychosis, and is associated with fewer extrapyramidal side effects than conventional antipsychotic drugs.

The overarching goal of this review is to provide current available knowledge on the role of the dopamine system and the ECS in schizophrenia, and to discuss key findings from animal studies and clinical trials investigating the antipsychotic potential of CBD.”

http://www.ncbi.nlm.nih.gov/pubmed/27267317