Aberrant epilepsy-associated mutant Nav1.6 sodium channel activity can be targeted with cannabidiol.

“Mutations in brain isoforms of voltage-gated sodium channels have been identified in patients with distinct epileptic phenotypes. Clinically, these patients often do not respond well to classic anti-epileptics and many remain refractory to treatment.

Exogenous as well as endogenous cannabinoids have been shown to target voltage-gated sodium channels and cannabidiol has recently received attention for its potential efficacy in the treatment of childhood epilepsies.

In this study, we further investigated the ability of cannabinoids to modulate sodium currents from wild-type and epilepsy-associated mutant voltage-gated sodium channels.

These findings suggest that cannabidiol could be exerting its anticonvulsant effects, at least in part, through its actions on voltage-gated sodium channels, and resurgent current may be a promising therapeutic target for the treatment of epilepsy syndromes.”

http://www.ncbi.nlm.nih.gov/pubmed/27267376

Could cannabidiol be used as an alternative to antipsychotics?

“Schizophrenia is a mental disorder that affects close to 1% of the population. Individuals with this disorder often present signs such as hallucination, anxiety, reduced attention, and social withdrawal. Although antipsychotic drugs remain the cornerstone of schizophrenia treatment, they are associated with severe side effects.

Recently, the endocannabinoid system (ECS) has emerged as a potential therapeutic target for pharmacotherapy that is involved in a wide range of disorders, including schizophrenia.

Since its discovery, a lot of effort has been devoted to the study of compounds that can modulate its activity for therapeutic purposes.

Among them, cannabidiol (CBD), a non-psychoactive component of cannabis, shows great promise for the treatment of psychosis, and is associated with fewer extrapyramidal side effects than conventional antipsychotic drugs.

The overarching goal of this review is to provide current available knowledge on the role of the dopamine system and the ECS in schizophrenia, and to discuss key findings from animal studies and clinical trials investigating the antipsychotic potential of CBD.”

http://www.ncbi.nlm.nih.gov/pubmed/27267317

Sativex Associated With Behavioral-Relapse Prevention Strategy as Treatment for Cannabis Dependence: A Case Series.

“The current lack of pharmacological treatments for cannabis dependence warrants the use of novel approaches and further investigation of promising pharmacotherapy.

In this case series, we assessed the use of self-titrated dosages of Sativex (1:1, Δ-tetrahydrocannabinol [THC]/cannabidiol [CBD] combination) and motivational enhancement therapy and cognitive behavioral therapy (MET/CBT) for the treatment of cannabis dependence among 5 treatment-seeking community-recruited cannabis-dependent subjects.

THC/CBD metabolite concentration indicated reduced cannabis use and compliance with medication.

CONCLUSIONS:

In summary, this pilot study found that with Sativex in combination with MET/CBT reduced cannabis use while preventing increases in craving and withdrawal in the 4 participants completing the study. Further systematic exploration of Sativex as a pharmacological treatment option for cannabis dependence should be performed.”

http://www.ncbi.nlm.nih.gov/pubmed/27261670

Cannabinoid Receptors Are Overexpressed in CLL but of Limited Potential for Therapeutic Exploitation.

“The cannabinoid receptors 1 and 2 (CNR1&2) are overexpressed in a variety of malignant diseases and cannabinoids can have noteworthy impact on tumor cell viability and tumor growth.

Patients diagnosed with chronic lymphocytic leukemia (CLL) present with very heterogeneous disease characteristics translating into highly differential risk properties.

To meet the urgent need for refinement in risk stratification at diagnosis and the search for novel therapies we studied CNR expression and response to cannabinoid treatment in CLL.

Expression levels of CNR1&2 were determined in 107 CLL patients by real-time PCR and analyzed with regard to prognostic markers and survival.

In contrast to other tumor entities, our data suggest a limited usability of cannabinoids for CLL therapy. Nonetheless, we could define CNR1 mRNA expression as novel prognostic marker.”

http://www.ncbi.nlm.nih.gov/pubmed/27248492

Endocannabinoid system: a promising therapeutic target for the treatment of haematological malignancies?

“The therapeutic properties of cannabinoids are well-known since ancient years.

Growing evidence exist on endocannabinoid system (ECS) modulation related with human tumorigenesis.

Taking into account the substantial role of ECS on immune cell regulation, the present review is aimed to summarize the emerging evidence concerning cannabinoid receptor (CBR) expression and cannabinoid ligand effects on haematological malignancies.

CONCLUSIONS:

Most of cannabinoid actions, mainly CB2R-mediated against haematopoietic malignant cells, seems promising, as inhibition of cell proliferation and apoptosis and paraptosis induction have been documented.

Cannabinoid ligands appear to activate rudimentary pathways for cell survival, such as ERK, JNK, p38 MAPK, and to induce caspase synthesis, in vitro. Such data are strongly recommended to be confirmed by in vivo experiments with emphasis on cannabinoid ligands’ bioavailability and phytocannabinoid psychotropic properties.

The preliminary antitumoral ECS effects and their relative lack of important side effects render ECS a promising therapeutic target for the treatment of haematological malignancies.”

http://www.ncbi.nlm.nih.gov/pubmed/27237820

Opioid withdrawal suppression efficacy of oral dronabinol in opioid dependent humans.

:”The cannabinoid (CB) system is a rational novel target for treating opioid dependence, a significant public health problem around the world. This proof-of-concept study examined the potential efficacy of a CB1 receptor partial agonist, dronabinol, in relieving signs and symptoms of opioid withdrawal.

CONCLUSION:

CB1 receptor activation is a reasonable strategy to pursue for the treatment of opioid withdrawal; however, dronabinol is not a likely candidate given its modest withdrawal suppression effects of limited duration and previously reported tachycardia during opioid withdrawal.”

http://www.ncbi.nlm.nih.gov/pubmed/27234658

[MEDICAL CANNABIS – A SOURCE FOR A NEW TREATMENT FOR AUTOIMMUNE DISEASE?].

“Medical uses of Cannabis sativa have been known for over 6,000 years. Nowadays, cannabis is mostly known for its psychotropic effects and its ability to relieve pain, even though there is evidence of cannabis use for autoimmune diseases like rheumatoid arthritis centuries ago. The pharmacological therapy in autoimmune diseases is mainly based on immunosuppression of different axes of the immune system while many of the drugs have major side effects. In this review we set out to examine the rule of Cannabis sativa as an immunomodulator and its potential as a new treatment option. In order to examine this subject we will focus on some major autoimmune diseases such as diabetes type I and rheumatoid arthritis.”

http://www.ncbi.nlm.nih.gov/pubmed/27215114

New therapeutic strategies for the treatment of male lower urinary tract symptoms.

“Male lower urinary tract symptoms (LUTS) are prevalent in the general population, especially in those of advanced age, and are characterized by notable diversity in etiology and presentation, and have been proven to cause various degrees of impairment on quality of life.

The prostate has traditionally been regarded as the core cause of male LUTS. As a result, medical treatment aims to provide symptomatic relief and effective management of progression of male LUTS due to benign prostatic enlargement.

Anti-inflammatory agents, vitamin D3-receptor analogs, and cannabinoids represent treatment modalities currently under investigation for use in LUTS patients.

Furthermore, luteinizing hormone-releasing hormone antagonists, transient receptor-potential channel blockers, purinergic neurotransmission antagonists, Rho-kinase inhibitors, and inhibitors of endothelin-converting enzymes could have therapeutic potential in LUTS management, but still remain in the experimental setting.

This article reviews new strategies for the medical treatment of male LUTS, which are dictated by the potential role of the bladder and the risk of benign prostatic hyperplasia progression. Moreover, combination treatments and therapies currently under investigation are also presented.”

http://www.ncbi.nlm.nih.gov/pubmed/27218069

[MEDICAL CANNABIS].

“The cannabis plant has been known to humanity for centuries as a remedy for pain, diarrhea and inflammation.

Current research is inspecting the use of cannabis for many diseases, including multiple sclerosis, epilepsy, dystonia, and chronic pain.

In inflammatory conditions cannabinoids improve pain in rheumatoid arthritis and: pain and diarrhea in Crohn’s disease.

Despite their therapeutic potential, cannabinoids are not free of side effects including psychosis, anxiety, paranoia, dependence and abuse.

Controlled clinical studies investigating the therapeutic potential of cannabis are few and small, whereas pressure for expanding cannabis use is increasing.

Currently, as long as cannabis is classified as an illicit drug and until further controlled studies are performed, the use of medical cannabis should be limited to patients who failed conventional better established treatment.”

http://www.ncbi.nlm.nih.gov/pubmed/27215115

The synthetic cannabinoid WIN55,212-2 mesylate decreases the production of inflammatory mediators in rheumatoid arthritis synovial fibroblasts by activating CB2, TRPV1, TRPA1 and yet unidentified receptor targets

Logo of jinflamm

“Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease characterized by joint inflammation and cartilage destruction.

In this study we assessed the ability of WIN to modulate cytokine and MMP-3 production in SFs over a wide concentration range and identified specific receptor targets that mediate the effects of this synthetic cannabinoid.

The synthetic cannabinoid WIN in low concentrations exhibits anti-inflammatory effects in synovial fibroblasts independent of CB1 and CB2 while CB2 and yet unidentified receptor targets are responsible for WIN effects in micromolar concentrations.

Our results indicate a TRPV1/TRPA1 dependent mechanism of SF regulation that might be coupled to cellular energy status and calcium content.

In this report we demonstrated anti-inflammatory effects of the synthetic cannabinoid WIN in low and high concentrations.

Furthermore, this study demonstrated anti-inflammatory effects via modulation of TRP channels by WIN. Together, inactivation of TRPs and activation of cannabinoid receptors might also reduce the sensation of pain, which further underlines the potential of WIN in the treatment of chronic inflammation.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4858820/