Cannabinoid receptors in atherosclerosis.

“…cannabinoid receptors are potential targets for the treatment of atherosclerosis…

Cannabinoids, such as Delta9-tetrahydrocannabinol, the major psychoactive compound of marijuana… was shown to inhibit disease progression through pleiotropic effects on inflammatory cells.

The development of novel cannabinoid receptor ligands that selectively target CB2 receptors or pharmacological modulation of the endocannabinoid system might offer novel therapeutic strategies in the treatment of atherosclerosis.

The immunomodulatory capacity of cannabinoids is now well established and suggests a broad therapeutic potential of cannabinoids for a variety of conditions, including atherosclerosis.”

http://www.ncbi.nlm.nih.gov/pubmed/16960500

http://www.thctotalhealthcare.com/category/atherosclerosis-2/

Cannabinoid receptors in acute and chronic complications of atherosclerosis

“Atherosclerosis is a chronic inflammatory disease that is the primary cause of myocardial infarction and stroke, which occur after sudden thrombotic occlusion of an artery.

A growing body of evidence suggests that cannabinoid signalling plays a fundamental role in atherosclerosis development and its clinical manifestations. Thus, CB2 receptors are protective in myocardial ischaemia/reperfusion and implicated in the modulation of chemotaxis, which is crucial for the recruitment of leukocytes during inflammation.

Delta-9-Tetrahydrocannabinol (THC)-mediated activation has been shown to inhibit atherosclerotic plaque progression in a CB2 dependent manner.

It is tempting to suggest that pharmacological modulation of the endocannabinoid system is a potential novel therapeutic strategy in the treatment of atherosclerosis.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2219535/

Towards a therapeutic use of selective CB2 cannabinoid receptor ligands for atherosclerosis.

“Atherosclerosis remains the primary cause of heart disease and stroke, causing approximately 50% of all deaths in Western countries. The identification of promising novel anti-atherosclerotic therapies is therefore of great interest and represents a continued challenge to the medical community.

Cannabinoids, such as Delta9-tetrahydrocannabinol (THC), which is the major psychoactive compound of marijuana, modulate immune functions and might therefore be of therapeutic use for the treatment of inflammatory diseases.

The authors have demonstrated recently that oral treatment with low dose THC inhibits atherosclerosis progression in mice through pleiotropic immunomodulatory effects on inflammatory cells. All these effects were mediated via the cannabinoid receptor CB(2), the main cannabinoid receptor expressed on immune cells.

The identification and characterization of cannabinoid derivative that selectively activate CB(2) receptors and are devoid of adverse effects might offer a novel therapeutic strategy for the treatment of atherosclerosis.”

http://www.ncbi.nlm.nih.gov/pubmed/19804131

https://www.futuremedicine.com/doi/abs/10.2217/14796678.2.1.49

“Researchers suggest that THC and other cannabinoids, which are active at CB2, the cannabinoid receptor expressed on immune cells, may be valuable in treating atherosclerosis.” https://www.medscape.com/viewarticle/787468

CBD-Rich Marijuana Fights Colon Cancer, New Study Finds

“In 2008, over one million individuals were diagnosed with colon cancer, also known as colorectal cancer or bowel cancer and it caused over 600,000 deaths globally. The results of a study published in the journal Phytomedicine in October 2013 suggest that a botanical extract made from high-CBD (cannabidiol) cannabis can selectively target colon cancer cells, while leaving healthy cells unharmed.

Researchers were able to reduce tumor growth and pre-cancerous lesions in mice with colon cancer using the pot molecule CBD as part of a “botanical drug substance”. The authors believe that CBD’s benefits as demonstrated by the results of the study could have clinical relevance for the use of cannabis-based medicines in cancer patients.

Current colon cancer treatments are not only very toxic but also fail to prevent the progression of the disease in some patients. Disease incidence and mortality have not reduced using screening strategies for colon cancer.

Researchers have made progress in investigating cannabis as a treatment for breast and brain cancers considering its antiproliferative CB1 and CB2-mediated effects in colorectal cancer cells and action in experimental models of colon cancer. The study was partially funded through grants from GW Pharmaceuticals and lead by researchers from Italy and the UK.”

http://blog.sfgate.com/smellthetruth/2014/01/06/cbd-rich-marijuana-fights-colon-cancer-new-study-finds/

“Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol” http://www.ncbi.nlm.nih.gov/pubmed/24373545

http://www.thctotalhealthcare.com/category/colon-cancer/

The case for assessing cannabidiol in epilepsy.

“Intractable epilepsies have an extraordinary impact on cognitive and behavioral function and quality of life, and the treatment of seizures represents a challenge and a unique opportunity. Over the past few years, considerable attention has focused on cannabidiol (CBD), the major nonpsychotropic compound of Cannabis sativa.

Basic research studies have provided strong evidence for safety and anticonvulsant properties of CBD. However, the lack of pure, pharmacologically active compounds and legal restrictions have prevented clinical research and confined data on efficacy and safety to anecdotal reports.

Pure CBD appears to be an ideal candidate among phytocannabinoids as a therapy for treatment-resistant epilepsy.

A first step in this direction is to systematically investigate the safety, pharmacokinetics, and interactions of CBD with other antiepileptic drugs and obtain an initial signal regarding efficacy at different dosages. These data can then be used to plan double-blinded placebo-controlled efficacy trials.”

http://www.ncbi.nlm.nih.gov/pubmed/24854434

http://www.thctotalhealthcare.com/category/epilepsy-2/

Cannabis Proves Effective In Treating Crohn’s Disease According To New Study

cannibis crohn's disease drug

“A new clinical study published in the journal Pharmacology and by the National Institute of Health has found that cannabis is effective in treating Crohn’s disease, which is a form of inflammatory bowel disease (IBD)…

The study, entitled: “Cannabis Finds Its Way into Treatment of Crohn’s Disease”  is co-authored by Rudolf Schicho, PhD and M. Storr, both of the Institute of Experimental and Clinical Pharmacology, Medical University of Graz in Graz, Austria.

In the study abstract, Schicho and Storr note that In ancient medicine, cannabis was widely used to treat and cure bowel disturbances and inflammation, and a recent clinical study now shows that the medicinal herb Cannabis sativa lived up to expectations and proved to be highly efficient in cases of inflammatory bowel diseases.”

http://bionews-tx.com/news/2014/01/29/cannabis-proves-effective-treating-crohns-disease-according-new-study/

 http://www.thctotalhealthcare.com/category/crohns-disease/

The influence of cannabinoids on generic traits of neurodegeneration

“In an increasingly ageing population, the incidence of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease are rising. While the aetiologies of these disorders are different, a number of common mechanisms that underlie their neurodegenerative components have been elucidated; namely neuroinflammation, excitotoxicity, mitochondrial dysfunction and reduced trophic support. Current therapies focus on treatment of the symptoms and attempt to delay the progression of these diseases but there is currently no cure.

Modulation of the endogenous cannabinoid system is emerging as a potentially viable option in the treatment of neurodegeneration. Endocannabinoid signalling has been found to be altered in many neurodegenerative disorders. To this end, pharmacological manipulation of the endogenous cannabinoid system, as well as application of phytocannabinoids and synthetic cannabinoids have been investigated. Signalling from the CB1 and CB2 receptors are known to be involved in the regulation of Ca2+ homeostasis, mitochondrial function, trophic support and inflammatory status, respectively, while other receptors gated by cannabinoids such as PPARγ, are gaining interest in their anti-inflammatory properties.

Through multiple lines of evidence, this evolutionarily conserved neurosignalling system has shown neuroprotective capabilities and is therefore a potential target for neurodegenerative disorders. This review details the mechanisms of neurodegeneration and highlights the beneficial effects of cannabinoid treatment.”

http://onlinelibrary.wiley.com/doi/10.1111/bph.12492/full

Towards a personalized treatment in depression: endocannabinoids, inflammation and stress response.

“The complex nature of depression is mirrored by difficulties in tailoring its treatment. Key underlying mechanisms of this mental disorder include elevated inflammation and a dysregulated hypothalamic-pituitary-adrenal (HPA) axis. More recently, the endocannabinoid system has been proposed as another important component in the pathogenesis of depression, and strong evidence suggests that all three systems communicate with each other. A growing number of genetic studies have investigated polymorphisms in depression in each of these systems separately. However, no study to date has looked at these genes in conjunction. In this article we will review the crosstalk between the endocannabinoid system, immune system and HPA axis; and discuss the evidence of gene polymorphisms and their relation to the risk of depression and its treatment. We propose future directions where genes of these three systems are considered from a joint perspective to improve prediction of treatment response, taking into account potentially overlooked genetic variations.”

http://www.ncbi.nlm.nih.gov/pubmed/24798725

http://www.thctotalhealthcare.com/category/depression-2/

Experimental cannabinoid 2 receptor-mediated immune modulation in sepsis.

“Sepsis is a complex condition that results from a dysregulated immune system in response to a systemic infection. Current treatments lack effectiveness in reducing the incidence and mortality associated with this disease. The endocannabinoid system offers great promise in managing sepsis pathogenesis due to its unique characteristics.

The present study explored the effect of modulating the CB2 receptor pathway in an acute sepsis mouse model.

Using various compounds we have shown different mechanisms of activating CB2 receptors to reduce leukocyte endothelial interactions in order to prevent further inflammatory damage during sepsis.”

http://www.ncbi.nlm.nih.gov/pubmed/24803745

[Tetrahydrocannabinol for treatment of chronic pain].

“Even in the last century cannabis was used in the treatment of chronic pain. The main active component of cannabis Delta-9-Tetrahydrocannabinol (THC) has been increasingly used in the treatment of nausea, vomiting, loss of appetite and depression. It is also recommended in the treatment of chronic pain. We present our first experiences with THC in the treatment of patients with chronic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/11810357

http://www.thctotalhealthcare.com/category/chronic-pain/

http://www.thctotalhealthcare.com/category/pain-2/