Chronic Pain Treatment With Cannabidiol in Kidney Transplant Patients in Uruguay.

Transplantation Proceedings Home

“Chronic pain is a major therapeutic problem in kidney transplant patients owing to nephrotoxicity associated with nonsteroidal antiiflammatory drugs.

Benefits in chronic pain treatment with cannabidiol (CBD) have been reported.

This study assesses the effect, safety, and possible drug interactions in kidney transplant patients treated with CBD for chronic pain.

RESULTS:

We assessed 7 patients with a mean age of 64.5 years (range, 58-75 years). CBD initial dose was 100 mg/d, CBD dose reduction to 50 mg/d has been done on day 4 to patient 1 for persistent nausea. Tacrolimus dose reduction in patient 3 was undertaken on days 4, 7, and 21 owing to persisting elevated levels (even before CBD) and itching, and on day 21 in patient 5. Tacrolimus levels decreased in patient 2 but were normal in the control 1 week later. Patients on cyclosporine were stable. Adverse effects were nausea, dry mouth, dizziness, drowsiness, and intermittent episodes of heat. CBD dose decrease was required in 2 patients. Two patients had total pain improvement, 4 had a partial response in the first 15 days, and in 1 there was no change.

CONCLUSIONS:

During this follow-up, CBD was well-tolerated, and there were no severe adverse effects. Plasma levels of tacrolimus were variable. Therefore, longer follow-up is required.”

https://www.ncbi.nlm.nih.gov/pubmed/29579828

http://www.transplantation-proceedings.org/article/S0041-1345(17)30962-4/fulltext

Impact of co-administration of oxycodone and smoked cannabis on analgesia and abuse liability.

Image result for neuropsychopharmacology

“Cannabinoids combined with opioids produce synergistic antinociceptive effects, decreasing the lowest effective antinociceptive opioid dose (i.e., opioid-sparing effects) in laboratory animals.

Although pain patients report greater analgesia when cannabis is used with opioids, no placebo-controlled studies have assessed the direct effects of opioids combined with cannabis in humans or the impact of the combination on abuse liability.

This double-blind, placebo-controlled, within-subject study determined if cannabis enhances the analgesic effects of low dose oxycodone using a validated experimental model of pain and its effects on abuse liability.

Cannabis enhances the analgesic effects of sub-threshold oxycodone, suggesting synergy, without increases in cannabis’s abuse liability. These findings support future research into the therapeutic use of opioid-cannabinoid combinations for pain.”

Sex differences in antinociceptive response to Δ-9-tetrahydrocannabinol and CP 55,940 in the mouse formalin test.

 Related image

“Cannabinoids have shown promise for the treatment of intractable pain states and may represent an alternative pharmacotherapy for pain management.

A growing body of clinical evidence suggests a role for sex in pain perception and in cannabinoid response.

We examined cannabinoid sensitivity and tolerance in male and female mice expressing a desensitization-resistant form (S426A/S430A) of the cannabinoid type 1 receptor (CB1R).

Mice were assessed for acute and inflammatory nociceptive behaviors in the formalin test following pretreatment with either vehicle or mixed CB1R/CB2R agonists, Δ-9-tetrahydrocannabinol ([INCREMENT]-THC) (1-6 mg/kg) or CP 55,940 (0.06-0.2 mg/kg). Tolerance to the effects of 6 mg/kg [INCREMENT]-THC or 0.1 mg/kg CP 55,940 was examined by the formalin test following chronic daily dosing.

Female mice showed decreased sensitivity to the effects of [INCREMENT]-THC and CP 55,940 compared with male mice. The S426A/S430A mutation increased the attenuation of nociceptive behaviors for both agonists in both sexes. Female mice displayed delayed tolerance to [INCREMENT]-THC compared with male mice, whereas the S426A/S430A mutation conferred a delay in tolerance to [INCREMENT]-THC in both sexes. Male S426A/S430A mutant mice also display resistance to tolerance to CP 55,940 compared with wild-type controls.

This study demonstrates sex and genotype differences in response for two different cannabinoid agonists. The results underscore the importance of including both male and female mice in preclinical studies of pain and cannabinoid pharmacology.”

https://www.ncbi.nlm.nih.gov/pubmed/29461336

https://insights.ovid.com/crossref?an=00001756-900000000-98413

The Cannabinoids Δ8THC, CBD, and HU-308 Act via Distinct Receptors to Reduce Corneal Pain and Inflammation

Mary Ann Liebert, Inc. publishers

“Corneal injury can result in dysfunction of corneal nociceptive signaling and corneal sensitization.

Activation of the endocannabinoid system has been reported to be analgesic and anti-inflammatory.

The purpose of this research was to investigate the antinociceptive and anti-inflammatory effects of cannabinoids with reported actions at cannabinoid 1 (CB1R) and cannabinoid 2 (CB2R) receptors and/or noncannabinoid receptors in an experimental model of corneal hyperalgesia.

Topical cannabinoids reduce corneal hyperalgesia and inflammation.

The antinociceptive and anti-inflammatory effects of Δ8THC are mediated primarily via CB1R, whereas that of the cannabinoids CBD and HU-308, involve activation of 5-HT1A receptors and CB2Rs, respectively.

Cannabinoids could be a novel clinical therapy for corneal pain and inflammation resulting from ocular surface injury.”

https://www.ncbi.nlm.nih.gov/pubmed/29450258

http://online.liebertpub.com/doi/abs/10.1089/can.2017.0041

Contribution of spinal 5-HT5A receptors to the antinociceptive effects of systemically administered cannabinoid agonist WIN 55,212-2 and morphine.

Canadian Journal of Physiology and Pharmacology

“The antinociceptive effects of cannabinoids and opioids have been known for centuries.

Serotonin and its receptors are also known to play important roles in nociception. However, the contribution of spinal 5-HT5A receptors in antinociceptive effects of cannabinoids and opioids has not been studied.

We conducted this study to clarify spinal mechanisms of the actions of the antinociceptive effects of cannabinoids and opioids.

Our findings show that spinal 5-HT5A receptors are involved in the antinociceptive effects of WIN 55,212-2 and morphine.”

https://www.ncbi.nlm.nih.gov/pubmed/29406831

http://www.nrcresearchpress.com/doi/10.1139/cjpp-2017-0567#.Wnr8P2inHrc

Involvement of glycine receptor α1 subunits in cannabinoid-induced analgesia.

Cover image

“Some cannabinoids have been shown to suppress chronic pain by targeting glycine receptors (GlyRs).

Although cannabinoid potentiation of α3 GlyRs is thought to contribute to cannabinoid-induced analgesia, the role of cannabinoid potentiation of α1 GlyRs in cannabinoid suppression of chronic pain remains unclear.

Here we report that dehydroxylcannabidiol (DH-CBD), a nonpsychoactive cannabinoid, significantly suppresses chronic inflammatory pain caused by noxious heat stimulation.

These findings suggest that spinal α1 GlyR is a potential target for cannabinoid analgesia in chronic inflammatory pain.”

https://www.ncbi.nlm.nih.gov/pubmed/29407767

https://www.sciencedirect.com/science/article/pii/S0028390818300479

Cannabis Use is Associated with Lower Odds of Prescription Opioid Analgesic Use Among HIV-Infected Individuals with Chronic Pain.

Publication Cover

“Chronic pain is common in the United States and prescribed opioid analgesics use for noncancer pain has increased dramatically in the past two decades, possibly accounting for the current opioid addiction epidemic. Co-morbid drug use in those prescribed opioid analgesics is common, but there are few data on polysubstance use patterns.

We explored patterns of use of cigarette, alcohol, and illicit drugs in HIV-infected people with chronic pain who were prescribed opioid analgesics.

Almost half of the sample of people with HIV and chronic pain reported current prescribed opioid analgesic use (N = 372, 47.1%). Illicit drug use was common (N = 505, 63.9%), and cannabis was the most commonly used illicit substance (N = 311, 39.4%).

In multivariate analyses, only cannabis use was significantly associated with lower odds of prescribed opioid analgesic use (adjusted odds ratio = 0.57; 95% confidence interval: 0.38-0.87).

Conclusions/Importance: Our data suggest that new medical cannabis legislation might reduce the need for opioid analgesics for pain management, which could help to address adverse events associated with opioid analgesic use.”

https://www.ncbi.nlm.nih.gov/pubmed/29338578

http://www.tandfonline.com/doi/abs/10.1080/10826084.2017.1416408?journalCode=isum20

Antinociceptive effects of mixtures of mu opioid receptor agonists and cannabinoid receptor agonists in rats: impact of drug and fixed-dose ratio.

Cover image

“Pain is a significant clinical problem, and there is a need for effective pharmacotherapies with fewer adverse effects than currently available drugs (e.g., mu opioid receptor agonists).

Cannabinoid receptor agonists enhance the antinociceptive effects of mu opioid receptor agonists, but it remains unclear which drugs and in what proportion will yield the most effective and safest treatments.

The antinociceptive effects of the mu opioid receptor agonists etorphine and morphine alone and in combination with the cannabinoid receptor agonists Δ9-THC and CP55940 were studied in male Sprague-Dawley rats (n=16) using a warm water tail withdrawal procedure.

The ratio of opioid to cannabinoid (3:1, 1:1, and 1:3) varied for each mixture. Drugs administered alone or as pairwise mixtures of an opioid and a cannabinoid dose-dependently increased tail withdrawal latency. Mixtures with morphine produced supra-additive (CP55940) and additive (Δ9-THC) effects, whereas mixtures with etorphine and either cannabinoid were sub-additive. The interactions were not different among ratios for a particular mixture.

The nature of the interaction between opioids and cannabinoids with regard to antinociceptive effects varies with the particular drugs in the mixture, which can have implications for designing combination therapies for pain.”

https://www.ncbi.nlm.nih.gov/pubmed/29183835

http://www.sciencedirect.com/science/article/pii/S0014299917307719

Acetaminophen Relieves Inflammatory Pain Through CB1 Cannabinoid Receptors in the Rostral Ventromedial Medulla.

Journal of Neuroscience

“Acetaminophen (paracetamol) is a widely used analgesic and antipyretic drug with only incompletely understood mechanisms of action.

Previous work, using models of acute nociceptive pain, indicated that analgesia by acetaminophen involves an indirect activation of CB1 receptors by the acetaminophen metabolite and endocannabinoid re-uptake inhibitor AM 404.  However, the contribution of the cannabinoid system to anti-hyperalgesia against inflammatory pain, the main indication of acetaminophen, and the precise site of the relevant CB1 receptors have remained elusive.

Here, we analyzed acetaminophen analgesia in mice of either sex with inflammatory pain and found that acetaminophen exerted a dose-dependent anti-hyperalgesic action, which was mimicked by intrathecally injected AM 404. Both compounds lost their anti-hyperalgesic activity in CB1-/- mice confirming the involvement of the cannabinoid system.

Our results indicate that the cannabinoid system contributes not only to acetaminophen analgesia against acute pain but also against inflammatory pain, and suggest that the relevant CB1 receptors reside in the RVM.

SIGNIFICANCE STATEMENT: Acetaminophen is a widely used analgesic drug with multiple but only incompletely understood mechanisms of action including a facilitation of endogenous cannabinoid signaling via one of its metabolites. Our present data indicate that enhanced cannabinoid signaling is also responsible for the analgesic effects of acetaminophen against inflammatory pain. Local injections of the acetaminophen metabolite AM 404 and of cannabinoid receptor antagonists as well as data from tissue specific CB1 receptor deficient mice suggest the rostral ventromedial medulla as an important site of the cannabinoid-mediated analgesia by acetaminophen.”

https://www.ncbi.nlm.nih.gov/pubmed/29167401

http://www.jneurosci.org/content/early/2017/11/22/JNEUROSCI.1945-17.2017

Current evidence of cannabinoid-based analgesia obtained in preclinical and human experimental settings.

European Journal of Pain

“Cannabinoids have a long record of recreational and medical use and become increasingly approved for pain therapy. This development is based on preclinical and human experimental research summarized in this review.

Cannabinoid CB1 receptors are widely expressed throughout the nociceptive system. Their activation by endogenous or exogenous cannabinoids modulates the release of neurotransmitters. This is reflected in antinociceptive effects of cannabinoids in preclinical models of inflammatory, cancer and neuropathic pain, and by nociceptive hypersensitivity of cannabinoid receptor-deficient mice.

Cannabis-based medications available for humans mainly comprise Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD) and nabilone.

During the last 10 years, six controlled studies assessing analgesic effects of cannabinoid-based drugs in human experimental settings were reported. An effect on nociceptive processing could be translated to the human setting in functional magnetic resonance imaging studies that pointed at a reduced connectivity within the pain matrix of the brain. However, cannabinoid-based drugs heterogeneously influenced the perception of experimentally induced pain including a reduction in only the affective but not the sensory perception of pain, only moderate analgesic effects, or occasional hyperalgesic effects. This extends to the clinical setting.

While controlled studies showed a lack of robust analgesic effects, cannabis was nearly always associated with analgesia in open-label or retrospective reports, possibly indicating an effect on well-being or mood, rather than on sensory pain. Thus, while preclinical evidence supports cannabinoid-based analgesics, human evidence presently provides only reluctant support for a broad clinical use of cannabinoid-based medications in pain therapy.

SIGNIFICANCE:

Cannabinoids consistently produced antinociceptive effects in preclinical models, whereas they heterogeneously influenced the perception of experimentally induced pain in humans and did not provide robust clinical analgesia, which jeopardizes the translation of preclinical research on cannabinoid-mediated antinociception into the human setting.”

https://www.ncbi.nlm.nih.gov/pubmed/29160600

http://onlinelibrary.wiley.com/doi/10.1002/ejp.1148/abstract?systemMessage=Wiley+Online+Library+usage+report+download+page+will+be+unavailable+on+Friday+24th+November+2017+at+21%3A00+EST+%2F+02.00+GMT+%2F+10%3A00+SGT+%28Saturday+25th+Nov+for+SGT+