Colon carcinogenesis is inhibited by the TRPM8 antagonist cannabigerol, a Cannabis-derived non-psychotropic cannabinoid.

“Cannabigerol (CBG) is a safe non-psychotropic Cannabis-derived cannabinoid which interacts with specific targets involved in carcinogenesis…

Here, we investigated whether CBG protects against colon tumorigenesis.

In vivo, CBG inhibited the growth of xenograft tumors as well as chemically-induced colon carcinogenesis.

CBG hampers colon cancer progression in vivo and selectively inhibits the growth of colorectal cancer cells, an effect shared by other TRPM8 antagonists.

CBG should be considered translationally in colorectal cancer prevention and cure.”

http://www.ncbi.nlm.nih.gov/pubmed/25269802

http://www.thctotalhealthcare.com/category/colon-cancer/

CBD-Rich Marijuana Fights Colon Cancer, New Study Finds

“In 2008, over one million individuals were diagnosed with colon cancer, also known as colorectal cancer or bowel cancer and it caused over 600,000 deaths globally. The results of a study published in the journal Phytomedicine in October 2013 suggest that a botanical extract made from high-CBD (cannabidiol) cannabis can selectively target colon cancer cells, while leaving healthy cells unharmed.

Researchers were able to reduce tumor growth and pre-cancerous lesions in mice with colon cancer using the pot molecule CBD as part of a “botanical drug substance”. The authors believe that CBD’s benefits as demonstrated by the results of the study could have clinical relevance for the use of cannabis-based medicines in cancer patients.

Current colon cancer treatments are not only very toxic but also fail to prevent the progression of the disease in some patients. Disease incidence and mortality have not reduced using screening strategies for colon cancer.

Researchers have made progress in investigating cannabis as a treatment for breast and brain cancers considering its antiproliferative CB1 and CB2-mediated effects in colorectal cancer cells and action in experimental models of colon cancer. The study was partially funded through grants from GW Pharmaceuticals and lead by researchers from Italy and the UK.”

http://blog.sfgate.com/smellthetruth/2014/01/06/cbd-rich-marijuana-fights-colon-cancer-new-study-finds/

“Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol” http://www.ncbi.nlm.nih.gov/pubmed/24373545

http://www.thctotalhealthcare.com/category/colon-cancer/

The cannabinoid delta(9)-tetrahydrocannabinol inhibits RAS-MAPK and PI3K-AKT survival signalling and induces BAD-mediated apoptosis in colorectal cancer cells.

“…there is considerable interest in therapeutics that can modulate survival signalling pathways and target cancer cells for death. There is emerging evidence that cannabinoids, especially Delta(9)-tetrahydrocannabinol (THC), may represent novel anticancer agents, due to their ability to regulate signalling pathways critical for cell growth and survival.

Here, we report that CB1 and CB2 cannabinoid receptors are expressed in human colorectal adenoma and carcinoma cells, and show for the first time that THC induces apoptosis in colorectal cancer cells…

The use of THC, or selective targeting of the CB1 receptor, may represent a novel strategy for colorectal cancer therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/17583570

http://www.thctotalhealthcare.com/category/colon-cancer/

WIN induces apoptotic cell death in human colon cancer cells through a block of autophagic flux dependent on PPARγ down-regulation.

“Cannabinoids have been reported to possess anti-tumorigenic activity in cancer models…

Here, we show that the synthetic cannabinoid WIN55,212-2 (WIN)-induced apoptosis in colon cancer cell lines is accompanied by endoplasmic reticulum stress induction.

In conclusion, at our knowledge, our results are the first to show that the reduction of PPARγ levels contributes to WIN-induced colon carcinoma cell death by blocking the pro-survival autophagic response of cells.”

http://www.ncbi.nlm.nih.gov/pubmed/24696378

Anti-tumor activity of the novel hexahydrocannabinol analog LYR-8 in Human colorectal tumor xenograft is mediated through the inhibition of Akt and hypoxia-inducible factor-1α activation.

“Cannabinoid compounds have been shown to exert anti-tumor effects by affecting angiogenesis, invasion, and metastasis.

 

In the present study, we examined the action mechanism by which a novel hexahydrocannabinol analog, exerts anti-angiogenic and anti-tumor activity in human cancer xenografts.

These results indicate a novel function of cannabinoid-like compound as an anti-tumor agent.”

http://www.ncbi.nlm.nih.gov/pubmed/22687485

Endocannabinoid system in cancer cachexia.

Image result for current opinion in clinical nutrition & metabolic care

“More than 60% of advanced cancer patients suffer from anorexia and cachexia.

This review focuses on the possible mechanisms by which the endocannabinoid system antagonizes cachexia-anorexia processes in cancer patients and how it can be tapped for therapeutic applications.

Cannabinoids stimulate appetite and food intake…

Cannabinoid type 1 receptor activation stimulates appetite and promotes lipogenesis and energy storage.

Further study of cancer-cachexia pathophysiology and the role of endocannabinoids will help us to develop cannabinoids without psychotropic properties, which will help cancer patients suffering from cachexia and improve outcomes of clinical antitumor therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/17563462

The endocannabinoid signaling system in cancer.

Image result for trends in pharmacological sciences

“The endocannabinoid system, comprising lipid-derived endocannabinoids, their G-protein-coupled receptors (GPCRs), and the enzymes for their metabolism, is emerging as a promising therapeutic target in cancer.

This report highlights the main signaling pathways for the antitumor effects of the endocannabinoid system in cancer and its basic role in cancerpathogenesis, and discusses the alternative view of cannabinoid receptors as tumor promoters.

We focus on new players in the antitumor action of the endocannabinoid system and on emerging crosstalk among cannabinoid receptors and other membrane or nuclear receptors involved in cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/23602129

No more pain upon Gq -protein-coupled receptor activation: role of endocannabinoids.

“Marijuana has been used to relieve pain for centuries. The analgesic mechanism of its constituents, the cannabinoids, was only revealed after the discovery of cannabinoid receptors (CB1 and CB2 ) two decades ago.

The subsequent identification of the endocannabinoids, anandamide and 2-arachidonoylglycerol (2-AG), and their biosynthetic and degradation enzymes discloses the therapeutic potential of compounds targeting the endocannabinoid system for pain control.

Inhibitors of the anandamide and 2-AG degradation enzymes, fatty acid amide hydrolase and monoacylglycerol lipase, respectively, may be superior to direct cannabinoid receptor ligands as endocannabinoids are synthesized on demand and rapidly degraded, focusing action at generating sites.

Recently, a promising strategy for pain relief was revealed in the periaqueductal gray (PAG). It is initiated by Gq -protein-coupled receptor (Gq PCR) activation of the phospholipase C-diacylglycerol lipase enzymatic cascade, generating 2-AG that produces inhibition of GABAergic transmission (disinhibition) in the PAG, thereby leading to analgesia.

Here, we introduce the antinociceptive properties of exogenous cannabinoids and endocannabinoids, involving their biosynthesis and degradation processes, particularly in the PAG. We also review recent studies disclosing the Gq PCR-phospholipase C-diacylglycerol lipase-2-AG retrograde disinhibition mechanism in the PAG, induced by activating several Gq PCRs, including metabotropic glutamatergic (type 5 metabotropic glutamate receptor), muscarinic acetylcholine (M1/M3), and orexin 1 receptors.

Disinhibition mediated by type 5 metabotropic glutamate receptor can be initiated by glutamate transporter inhibitors or indirectly by substance P, neurotensin, cholecystokinin and capsaicin. Finally, the putative role of 2-AG generated after activating the above neurotransmitter receptors in stress-induced analgesia is discussed.”

http://www.ncbi.nlm.nih.gov/pubmed/24494686

Physiological intestinal oxygen modulates the Caco-2 cell model and increases sensitivity to the phytocannabinoid cannabidiol.

“The Caco-2 cell model is widely used as a model of colon cancer… these cells were more sensitive to cannabidiol-induced antiproliferative actions through changes in cellular energetics…

These effects could impact on its development as an anticancer therapeutic…”

http://www.ncbi.nlm.nih.gov/pubmed/24464350

Inhibition of colon carcinogenesis by a standardized Cannabis sativa extract with high content of cannabidiol.

“Colon cancer is a major public health problem. Cannabis-based medicines are useful adjunctive treatments in cancer patients. Here, we have investigated the effect of a standardized Cannabis sativa extract with high content of cannabidiol (CBD), here named CBD BDS, i.e. CBD botanical drug substance, on colorectal cancer cell proliferation and in experimental models of colon cancer in vivo.

RESULTS:

CBD BDS and CBD reduced cell proliferation in tumoral, but not in healthy, cells… In vivo, CBD BDS reduced AOM-induced preneoplastic lesions and polyps as well as tumour growth in the xenograft model of colon cancer.

CONCLUSIONS:

CBD BDS attenuates colon carcinogenesis and inhibits colorectal cancer cell proliferation via CB1 and CB2 receptor activation. The results may have some clinical relevance for the use of Cannabis-based medicines in cancer patients.”

http://www.ncbi.nlm.nih.gov/pubmed/24373545