Intractable nausea and vomiting due to gastrointestinal mucosal metastases relieved by tetrahydrocannabinol (dronabinol).

“Four years following resection of a Clark’s level IV malignant melanoma, a 50-year-old man developed widespred metastatic disease involving the liver, bones, brain, gastrointestinal mucosa, and lungs. One week after whole brain radiation therapy, he was admitted to the hospital for nausea, vomiting, and pain.

He was treated with several antiemetic drugs, but it was not until dronabinol was added that the nausea and vomiting stopped.

Dronabinol was an effective antiemetic used in combination with prochlorperazine in nausea and vomiting unresponsive to conventional antiemetics.”

http://www.ncbi.nlm.nih.gov/pubmed/9392925

Psychoactive cannabinoids reduce gastrointestinal propulsion and motility in rodents.

“Marijuana has been reported to be an effective antinauseant and antiemetic in patients receiving cancer chemotherapy.

Whether this is due to psychological changes, central antiemetic properties and/or direct effects on gastrointestinal (GI) function is not known. The purpose of these investigations was to determine whether the major constituents of marijuana and the synthetic cannabinoid nabilone have any effects on GI function which can be detected in rodent models of GI transit and motility. Intravenous delta 9-tetrahydrocannabinol (delta 9-THC) slowed the rate of gastric emptying and small intestinal transit in mice and in rats. Delta 9,11-THC, cannabinol and nabilone given i.v. also inhibited small intestinal transit in mice, but were less effective in reducing gastric emptying. Cannabidiol given i.v. had no effect on gastric emptying or intestinal transit. Those cannabinoids which inhibited GI transit did so at doses equal to, or lower, than those reported to produce central nervous system activity. In rats, delta 9-THC produced greater inhibition of gastric emptying and small intestinal transit than large bowel transit, indicating a selectivity for the more proximal sections of the gut. In addition, i.v. delta 9-THC decreased the frequency of both gastric and intestinal contractions without altering intraluminal pressure. Such changes probably reflect a decrease in propulsive activity, without change in basal tone.

These data indicate that delta 9-THC, delta 9,11-THC, cannabinol and nabilone (but not cannabidiol) exert an inhibitory effect on GI transit and motility in rats.”

http://www.ncbi.nlm.nih.gov/pubmed/2542532

Pharmacological synergism between cannabinoids and paclitaxel in gastric cancer cell lines.

“Orally applicable Delta9-tetrahydrocannabinol and its synthetic derivatives have been used as antiemetic drugs during chemotherapy in cancer patients.

 However, it is not well known how cannabinoids influence the effects of chemotherapeutic agents on malignant tumors. In this study, we investigated how the endogenous cannabinoid anandamide (AEA) changes the effect of paclitaxel on gastric cancer cell lines.

 In the human gastric cancer cell line, HGC-27, which express cannabinoid receptor 1 (CB1), AEA stimulated proliferation at concentrations under 1 microM, while it strongly suppressed proliferation through the induction of apoptosis at 10 microM. This bimodal effect was reproduced by a selective CB1 agonist, arachidonyl-2-chloroethylamide, although the effects were less marked. When AEA was used with paclitaxel, AEA at 10 microM synergistically enhanced the cytotoxic effect of paclitaxel, whereas it showed no significant effect at lower concentrations. Flow cytometric analysis revealed that addition of 10 microM AEA synergistically enhanced paclitaxel-induced apoptosis, possibly through the activation of caspase-3, -8, and -9.

Our results suggest that cannabinoids could be a good palliative agent for cancer patients receiving paclitaxel.”

http://www.ncbi.nlm.nih.gov/pubmed/19394652

Effect of a synthetic cannabinoid agonist on the proliferation and invasion of gastric cancer cells.

“Although cannabinoids are associated with antineoplastic activity in a number of cancer cell types, the effect in gastric cancer cells has not been clarified. In the present study, we investigated the effects of a cannabinoid agonist on gastric cancer cell proliferation and invasion.

The cannabinoid agonist WIN 55,212-2 inhibited the proliferation of human gastric cancer cells in a dose-dependent manner and that this effect was mediated partially by the CB(1) receptor. We also found that WIN 55,212-2 induced apoptosis and down-regulation of the phospho-AKT expression in human gastric cancer cells. Furthermore, WIN 55,212-2 treatment inhibited the invasion of gastric cancer cells, and down-regulated the expression of MMP-2 and VEGF-A through the cannabinoid receptors.

Our results open the possibilities in using cannabinoids as a new gastric cancer therapy.”

http://www.ncbi.nlm.nih.gov/pubmed/20336665

Antiproliferative mechanism of a cannabinoid agonist by cell cycle arrest in human gastric cancer cells.

“For gastric cancers, the antineoplastic activity of cannabinoids has been investigated in only a few reports and knowledge regarding the mechanisms involved is limited. We have reported previously that treatment of gastric cancer cells with a cannabinoid agonist significantly decreased cell proliferation and induced apoptosis.

Here, we evaluated the effects of cannabinoids on various cellular mediators involved in cell cycle arrest in gastric cancer cells. AGS and MKN-1 cell lines were used as human gastric cancer cells and WIN 55,212-2 as a cannabinoid agonist.

 …Cell cycle arrest preceded apoptotic response. Thus, this cannabinoid agonist can reduce gastric cancer cell proliferation via G1 phase cell cycle arrest, which is mediated via activation of the MAPK pathway and inhibition of pAKT.”

http://www.ncbi.nlm.nih.gov/pubmed/21312237

Cannabinoid Receptor Agonist as an Alternative Drug in 5-fluorouracil-resistant Gastric Cancer Cells.

“Fluorouracil is the main chemotherapeutic drug used for gastrointestinal cancers, which suffers the important problem of treatment resistance. There is little information whether cannabinoid agonists can be used as an alternative drug for fluorouracil-resistant gastric cancer cells. In this study, we investigated the effects of a cannabinoid agonist, WIN-55,212-2, on 5-fluorouracil (5-FU)-resistant human gastric cancer cells, to examine whether the cannabinoid agonist may be an alternative therapy.

These results indicate that a cannabinoid agonist may, indeed, be an alternative chemotherapeutic agent for 5-FU-resistant gastric cancer.”

http://www.ncbi.nlm.nih.gov/pubmed/23749906

The endocannabinoid system and its therapeutic exploitation.

Image result for Nat Rev Drug Discov.

“The term ‘endocannabinoid’ – originally coined in the mid-1990s after the discovery of membrane receptors for the psychoactive principle in Cannabis, Delta9-tetrahydrocannabinol and their endogenous ligands – now indicates a whole signalling system that comprises cannabinoid receptors, endogenous ligands and enzymes for ligand biosynthesis and inactivation. This system seems to be involved in an ever-increasing number of pathological conditions. With novel products already being aimed at the pharmaceutical market little more than a decade since the discovery of cannabinoid receptors, the endocannabinoid system seems to hold even more promise for the future development of therapeutic drugs. We explore the conditions under which the potential of targeting the endocannabinoid system might be realized in the years to come.”  http://www.ncbi.nlm.nih.gov/pubmed/15340387

http://www.nature.com/nrd/journal/v3/n9/full/nrd1495.html

From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.

Image result for West Indian Med J

“Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the ‘holy grail’ of endocannabinoid research.”

http://www.ncbi.nlm.nih.gov/pubmed/23155985

Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities.

Philosophical Transactions of the Royal Society B: Biological Sciences: 367 (1607)

“Human tissues express cannabinoid CB(1) and CB(2) receptors that can be activated by endogenously released ‘endocannabinoids’ or exogenously administered compounds in a manner that reduces the symptoms or opposes the underlying causes of several disorders in need of effective therapy. Three medicines that activate cannabinoid CB(1)/CB(2) receptors are now in the clinic: Cesamet (nabilone), Marinol (dronabinol; Δ(9)-tetrahydrocannabinol (Δ(9)-THC)) and Sativex (Δ(9)-THC with cannabidiol). These can be prescribed for the amelioration of chemotherapy-induced nausea and vomiting (Cesamet and Marinol), stimulation of appetite (Marinol) and symptomatic relief of cancer pain and/or management of neuropathic pain and spasticity in adults with multiple sclerosis (Sativex). This review mentions several possible additional therapeutic targets for cannabinoid receptor agonists. These include other kinds of pain, epilepsy, anxiety, depression, Parkinson’s and Huntington’s diseases, amyotrophic lateral sclerosis, stroke, cancer, drug dependence, glaucoma, autoimmune uveitis, osteoporosis, sepsis, and hepatic, renal, intestinal and cardiovascular disorders. It also describes potential strategies for improving the efficacy and/or benefit-to-risk ratio of these agonists in the clinic. These are strategies that involve (i) targeting cannabinoid receptors located outside the blood-brain barrier, (ii) targeting cannabinoid receptors expressed by a particular tissue, (iii) targeting upregulated cannabinoid receptors, (iv) selectively targeting cannabinoid CB(2) receptors, and/or (v) adjunctive ‘multi-targeting’.”  https://www.ncbi.nlm.nih.gov/pubmed/23108552

“Targeting the endocannabinoid system with cannabinoid receptor agonists: pharmacological strategies and therapeutic possibilities”  http://rstb.royalsocietypublishing.org/content/367/1607/3353.long

Therapeutic aspects of cannabis and cannabinoids

The British Journal of Psychiatry

“HISTORY OF THERAPEUTIC USE

The first formal report of cannabis as a medicine appeared in China nearly 5000 years ago when it was recommended for malaria, constipation, rheumatic pains and childbirth and, mixed with wine, as a surgical analgesic. There are subsequent records of its use throughout Asia, the Middle East, Southern Africa and South America. Accounts by Pliny, Dioscorides and Galen remained influential in European medicine for 16 centuries.”

“It was not until the 19th century that cannabis became a mainstream medicine in Britain. W. B. O’Shaughnessy, an Irish scientist and physician, observed its use in India as an analgesic, anticonvulsant, anti-spasmodic, anti-emetic and hypnotic. After toxicity experiments on goats and dogs, he gave it to patients and was impressed with its muscle-relaxant, anticonvulsant and analgesic properties, and recorded its use-fulness as an anti-emetic.”

“After these observations were published in 1842, medicinal use of cannabis expanded rapidly. It soon became available ‘over the counter’ in pharmacies and by 1854 it had found its way into the United States Dispensatory. The American market became flooded with dozens of cannabis-containing home remedies.”

“Cannabis was outlawed in 1928 by ratification of the 1925 Geneva Convention on the manufacture, sale and movement of dangerous drugs. Prescription remained possible until final prohibition under the 1971 Misuse of Drugs Act, against the advice of the Advisory Committee on Drug Dependence.”

“In the USA, medical use was effectively ruled out by the Marijuana Tax Act 1937. This ruling has been under almost constant legal challenge and many special dispensations were made between 1976 and 1992 for individuals to receive ‘compassionate reefers’. Although this loophole has been closed, a 1996 California state law permits cultivation or consumption of cannabis for medical purposes, if a doctor provides a written endorsement. Similar arrangements apply in Italy and Canberra, Australia.”

“Results and Conclusions Cannabis and some cannabinoids are effective anti-emetics and analgesics and reduce intra-ocular pressure. There is evidence of symptom relief and improved well-being in selected neurological conditions, AIDS and certain cancers. Cannabinoids may reduce anxiety and improve sleep. Anticonvulsant activity requires clarification. Other properties identified by basic research await evaluation. Standard treatments for many relevant disorders are unsatisfactory. Cannabis is safe in overdose but often produces unwanted effects, typically sedation, intoxication, clumsiness, dizziness, dry mouth, lowered blood pressure or increased heart rate. The discovery of specific receptors and natural ligands may lead to drug developments. Research is needed to optimise dose and route of administration, quantify therapeutic and adverse effects, and examine interactions.”

http://bjp.rcpsych.org/content/178/2/107.long