Chronic cannabinoid receptor stimulation selectively prevents motor impairments in a mouse model of Huntington’s disease.

“Huntington’s disease (HD) is a devastating neurodegenerative disease…

The endocannabinoid system (ECS) is a relevant candidate to participate in the etiopathology of HD as it is a key modulator of brain function, especially in areas primarily affected by HD…

… improving ECS function may constitute a useful strategy to eliminate or at least delay the appearance of HD symptoms…

…chronic administration was able to prevent the appearance of motor deficits, to increase the number of striatal huntingtin inclusions and to prevent the loss of striatal medium-sized spiny neurons, without affecting the social or cognitive alterations.

These findings suggest that prolonged administration of cannabinoid receptor agonists could be an appropriate strategy for selectively improving motor symptoms and stimulating neuroprotective processes in HD patients.”

http://www.ncbi.nlm.nih.gov/pubmed/25123645

http://www.thctotalhealthcare.com/category/huntingtons/

The endocannabinoid system: a putative role in neurodegenerative diseases.

An external file that holds a picture, illustration, etc.
Object name is ijhrba-02-100-i001.jpg

“Scientific evidence shows that an hypofunction or a dysregulation of the endocannabinoid system may be responsible for some of the symptoms of diseases such as multiple sclerosis, amyotrophic lateral sclerosis, Huntington’s, Parkinson’s and Alzheimer’s diseases.

The aim of this review is to highlight the role of endocannabinoid system in neurodegenerative diseases

Scientific evidence shows that cannabis can provide symptomatic relief in several neurodegenerative diseases such as multiple sclerosis, Huntington’s, Parkinson’s and Alzheimer’s diseases, and amyotrophic lateral sclerosis. These findings imply that a hypofunction or a dysregulation of the endocannabinoid system may be responsible for some of the symptoms of these diseases. Moreover, given the abundance of CB1 receptors in areas associated with movement and executive thought, researchers’ interest has often focused on endocannabinoid levels in patients with motor degenerative disorders.

CONCLUSIONS:

The important role played by endocannabinoid system promises interesting developments, in particular to evaluate the effectiveness of new drugs in both psychiatry and neurology.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4070159/

Cannabinoid receptor CB2 is expressed on vascular cells, but not astroglial cells in the post-mortem human Huntington’s disease brain.

“Huntington’s disease (HD) is an inherited neurological disease with motor, cognitive and psychiatric symptoms. Characterised by neuronal degeneration, HD pathology is initially apparent in the striatum and cortex.

Considerable research has recently suggested that the neurological immune response apparent in brain injury and disease may provide a valuable therapeutic target.

Cannabinoid CB2 receptors are localised and up-regulated on a number of peripheral immune cell types following inflammation and injury.

…our observation that CB2 is present on blood vessel cells, with increased CD31 co-localisation in HD may represent a new context for CB2 therapeutic approaches to neurodegenerative diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/24978314

http://www.thctotalhealthcare.com/category/huntingtons/

The influence of cannabinoids on generic traits of neurodegeneration

“In an increasingly ageing population, the incidence of neurodegenerative disorders such as Alzheimer’s disease, Parkinson’s disease and Huntington’s disease are rising. While the aetiologies of these disorders are different, a number of common mechanisms that underlie their neurodegenerative components have been elucidated; namely neuroinflammation, excitotoxicity, mitochondrial dysfunction and reduced trophic support. Current therapies focus on treatment of the symptoms and attempt to delay the progression of these diseases but there is currently no cure.

Modulation of the endogenous cannabinoid system is emerging as a potentially viable option in the treatment of neurodegeneration. Endocannabinoid signalling has been found to be altered in many neurodegenerative disorders. To this end, pharmacological manipulation of the endogenous cannabinoid system, as well as application of phytocannabinoids and synthetic cannabinoids have been investigated. Signalling from the CB1 and CB2 receptors are known to be involved in the regulation of Ca2+ homeostasis, mitochondrial function, trophic support and inflammatory status, respectively, while other receptors gated by cannabinoids such as PPARγ, are gaining interest in their anti-inflammatory properties.

Through multiple lines of evidence, this evolutionarily conserved neurosignalling system has shown neuroprotective capabilities and is therefore a potential target for neurodegenerative disorders. This review details the mechanisms of neurodegeneration and highlights the beneficial effects of cannabinoid treatment.”

http://onlinelibrary.wiley.com/doi/10.1111/bph.12492/full

The cytokine and endocannabinoid systems are co-regulated by NF-κB p65/RelA in cell culture and transgenic mouse models of Huntington’s disease and in striatal tissue from Huntington’s disease patients.

“Transcriptional dysregulation is a major pathological feature of Huntington’s disease (HD). The goal of this study was to understand how p65/RelA co-regulated genes, specifically those of the cytokine and endocannabinoid systems, were affected in HD. p65/RelA levels were lower in human HD tissue and R6/2 HD mice, as were the levels of the type 1 cannabinoid receptor (CB1), IL-1β, IL-8, CCL5, GM-CSF, MIP-1β, and TNFα, all of which may be regulated by p65/RelA. Activation of p65/RelA restored CB1 and CCL5 expression in STHdh cell models of HD. Therefore, p65/RelA activation may normalize the expression of some genes in HD.”

http://www.ncbi.nlm.nih.gov/pubmed/24360910

Therapeutic potential of cannabinoid medicines.

Drug Testing and Analysis

“Cannabis was extensively used as a medicine throughout the developed world in the nineteenth century but went into decline early in the twentieth century ahead of its emergence as the most widely used illicit recreational drug later that century. Recent advances in cannabinoid pharmacology alongside the discovery of the endocannabinoid system (ECS) have re-ignited interest in cannabis-based medicines.

The ECS has emerged as an important physiological system and plausible target for new medicines. Its receptors and endogenous ligands play a vital modulatory role in diverse functions including immune response, food intake, cognition, emotion, perception, behavioural reinforcement, motor co-ordination, body temperature, wake/sleep cycle, bone formation and resorption, and various aspects of hormonal control. In disease it may act as part of the physiological response or as a component of the underlying pathology.

In the forefront of clinical research are the cannabinoids delta-9-tetrahydrocannabinol and cannabidiol, and their contrasting pharmacology will be briefly outlined. The therapeutic potential and possible risks of drugs that inhibit the ECS will also be considered. This paper will then go on to review clinical research exploring the potential of cannabinoid medicines in the following indications: symptomatic relief in multiple sclerosis, chronic neuropathic pain, intractable nausea and vomiting, loss of appetite and weight in the context of cancer or AIDS, psychosis, epilepsy, addiction, and metabolic disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/24006213

http://onlinelibrary.wiley.com/doi/10.1002/dta.1529/abstract

Memory-rescuing effects of cannabidiol in an animal model of cognitive impairment relevant to neurodegenerative disorders.

“Cannabidiol, the main nonpsychotropic constituent of Cannabis sativa, possesses a large number of pharmacological effects including anticonvulsive, sedative, hypnotic, anxiolytic, antipsychotic, anti-inflammatory, and neuroprotective, as demonstrated in clinical and preclinical studies.

 Many neurodegenerative disorders involve cognitive deficits, and this has led to interest in whether cannabidiol could be useful in the treatment of memory impairment associated to these diseases…

We used an animal model of cognitive impairment induced by iron overload in order to test the effects of cannabidiol in memory-impaired rats…

RESULTS:

A single acute injection of cannabidiol at the highest dose was able to recover memory in iron-treated rats. Chronic cannabidiol improved recognition memory in iron-treated rats. Acute or chronic cannabidiol does not affect memory in control rats.

CONCLUSIONS:

The present findings provide evidence suggesting the potential use of cannabidiol for the treatment of cognitive decline associated with neurodegenerative disorders.

 Further studies, including clinical trials, are warranted to determine the usefulness of cannabidiol in humans suffering from neurodegenerative disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/21870037

Study: Cannabis may prevent brain damage – FOX

“Marijuana continues to be a paradox as it makes its way from illicit drug to wonder medicine being used to treat a number of symptoms and disorders more safely than traditional pharmaceuticals.”

  • 110712_fr_marijuana2_640.jpg
     

“In the latest news, cannabis, which has been associated with long-term cognitive deficits in chronic users, is now being tested as a treatment to preserve brain function after traumatic injury.

…some reports have shown that cannabis has neuroprotective effects. Studies have suggested that it has protective effects in neurodegenerative diseases like multiple sclerosis, Alzheimer’s, Huntington’s and Parkinson’s diseases.”

More: http://www.foxnews.com/health/2013/06/06/study-cannabis-may-prevent-brain-damage/

Read more: http://www.foxnews.com/health/2013/06/06/study-cannabis-may-prevent-brain-damage/#ixzz2VXJJw9yc

The endocannabinoid system and its therapeutic exploitation.

Image result for Nat Rev Drug Discov.

“The term ‘endocannabinoid’ – originally coined in the mid-1990s after the discovery of membrane receptors for the psychoactive principle in Cannabis, Delta9-tetrahydrocannabinol and their endogenous ligands – now indicates a whole signalling system that comprises cannabinoid receptors, endogenous ligands and enzymes for ligand biosynthesis and inactivation. This system seems to be involved in an ever-increasing number of pathological conditions. With novel products already being aimed at the pharmaceutical market little more than a decade since the discovery of cannabinoid receptors, the endocannabinoid system seems to hold even more promise for the future development of therapeutic drugs. We explore the conditions under which the potential of targeting the endocannabinoid system might be realized in the years to come.”  http://www.ncbi.nlm.nih.gov/pubmed/15340387

http://www.nature.com/nrd/journal/v3/n9/full/nrd1495.html

Cannabis compound can help cells

“Cannabis has been used recreationally and for medicinal purposes for centuries, yet its 60 plus active components are only partly understood. Now scientists have discovered how a compound in cannabis can help cells to function in our bodies, and aid recovery after a damaging event.

In a paper published in the Journal of Neuroscience, the researchers report on their studies into cannabidiol – a naturally occurring molecule found in cannabis.

Also known as CBD, it is not the constituent that gives the high – that compound is called tetrahydrocannabinol or THC – and so may be more acceptable as a drug treatment.

Both compounds are currently used in a pharmaceutical medicine to help patients relieve pain and other symptoms of Multiple Sclerosis.

Now researchers have discovered how CBD actually works within brain cells.

By interacting with mitochondria – which are the power generators of all cells – it can help maintain normal levels of calcium allowing cells to function properly and providing a greater resistance to damage.

Disturbance of calcium levels has long been associated with a number of brain disorders. So the finding could have implications for the development of new treatments for disorders related to malfunctioning mitochondria.

Dr Bettina Platt, from the University’s School of Medical Sciences, said: “Scientists have known for a long time that cannabidiol can help with pain relief but we never really knew how it worked.

“However we have discovered what it actually does at the cellular level.

“We are hoping that our findings can instruct the development of cannabidiol based treatments for disorders related to mitochondrial dysfunction such as Parkinson’s disease or Huntington’s disease.”

More: http://phys.org/news154280470.html