Multiple sclerosis symptoms and spasticity management: new data.

Future Medicine Logo

“Spasticity, perceived by patients as muscle rigidity and spasms, is a common symptom in multiple sclerosis (MS). It is associated with functional impairment that can exacerbate other MS symptoms and reduce quality of life.

Pharmacological treatment options are limited and frequently ineffective. Treatment adherence is a key issue to address in these patients.

The efficacy and safety of 9-delta-tetrahydrocannabinol:cannabidiol (THC:CBD) oromucosal spray for treatment of MS spasticity were demonstrated in four Phase III trials.

Observational studies and registry data subsequently confirmed the effectiveness and tolerability of THC:CBD oromucosal spray under everyday practice conditions.

Among patients who respond to treatment, THC:CBD oromucosal spray has been shown to produce positive improvements in gait parameters and to normalize muscle fibers.”

Oral administration of cannabis with lipids leads to high levels of cannabinoids in the intestinal lymphatic system and prominent immunomodulation.

 

 

“Cannabidiol (CBD) and ∆9-tetrahydrocannabinol (THC) have well documented immunomodulatory effects in vitro, but not following oral administration in humans. Here we show that oral co-administration of cannabinoids with lipids can substantially increase their intestinal lymphatic transport in rats. Moreover, immune cells from MS patients were more susceptible to the immunosuppressive effects of cannabinoids than those from healthy volunteers or cancer patients. Therefore, administering cannabinoids with a high-fat meal or in lipid-based formulations has the potential to be a therapeutic approach to improve the treatment of MS, or indeed other autoimmune disorders.”  https://www.ncbi.nlm.nih.gov/pubmed/29109461

“Cannabis sativa has a very long history of medical use. In summary, it has been demonstrated in this work that oral co-administration of cannabis or cannabis-based medicines with lipids results in extremely high levels of lipophilic cannabinoids in the intestinal lymphatic system and prominent immunomodulatory effects. Therefore, administering cannabinoids with a high-fat meal, as cannabis-containing food, or in lipid-based formulations has the potential to be a therapeutic approach to improve the treatment of MS, or indeed other autoimmune disorders.”  https://www.nature.com/articles/s41598-017-15026-z

The endocannabinoid system and its therapeutic exploitation in multiple sclerosis: clues for other neuroinflammatory diseases.

Cover image

“Multiple sclerosis is the most common inflammatory demyelinating disease of the central nervous system, caused by an autoimmune response against myelin that eventually leads to progressive neurodegeneration and disability. Although the knowledge on its underlying neurobiological mechanisms has considerably improved, there is a still unmet need for new treatment options, especially for the progressive forms of the disease.

Both preclinical and clinical data suggest that cannabinoids, derived from the Cannabis sativa plant, may be used to control symptoms such as spasticity and chronic pain, whereas only preclinical data indicate that these compounds and their endogenous counterparts, i.e. the endocannabinoids, may also exert neuroprotective effects and slow down disease progression.

Here, we review the preclinical and clinical studies that could explain the therapeutic action of cannabinoid-based medicines, as well as the medical potential of modulating endocannabinoid signaling in multiple sclerosis, with a link to other neuroinflammatory disorders that share common hallmarks and pathogenetic features.”

https://www.ncbi.nlm.nih.gov/pubmed/29097192

http://www.sciencedirect.com/science/article/pii/S0301008217300709

Sativex in the management of multiple sclerosis-related spasticity: An overview of the last decade of clinical evaluation.

Multiple Sclerosis and Related Disorders Home

“Spasticity is a common symptom of multiple sclerosis (MS) affecting about 80% of MS patients. Numerous lines of evidence suggest that spasticity due to its complexity is not adequately managed with conventional anti-spastic therapies. Therefore, in order to improve the outcomes for the majority of MS patients, alternative approaches are needed to be discovered. Over the last years, the use of cannabinoid compounds as a potential treatment for MS-related symptoms has aroused great interest, owing to encouraging preclinical and clinical studies. To date, Sativex, an oromucosal spray containing tetrahydrocannabinol and cannabidiol in approximately 1:1 ratio, is the only commercially available formulation containing cannabinoids used as add-on therapy for treatment of spasticity in adult MS patients who are not responding to conventional antispastic therapies.

METHODS:

Here, by performing a literature search, we provided an overview of the last decade of clinical evaluations as well as post-marketing studies about effectiveness and safety of Sativex in the management of MS-related spasticity.

RESULTS:

Sativex was proven effective in treating spasticity and also in improving the patient’s quality of life. In addition, a low incidence of adverse reactions Sativex-related supports the good safety profile and its tolerability.

CONCLUSION:

This review by recognizing the clinical effectiveness of Sativex in spasticity management, opened a new opportunity for many patients with spasticity resistant to common antispastic drugs.”

https://www.ncbi.nlm.nih.gov/pubmed/29055461

http://www.msard-journal.com/article/S2211-0348(17)30148-7/fulltext

THC/CBD oromucosal spray in patients with multiple sclerosis overactive bladder: a pilot prospective study.

Image result for Neurol Sci.

“Lower urinary tract dysfunctions (LUTDs) are commonly reported in multiple sclerosis (MS) patients and are mainly related to neurogenic overactive bladder (OAB).

The aim of this observational study was to assess the effect of a tetrahydrocannabinol-cannabidiol (THC/CBD) oromucosal spray on resistant OAB by means of clinical and instrumental tools.

The THC/CBD treatment successfully reduced the OAB symptoms.

THC/CBD oromucosal spray has shown to be effective in improving overactive bladder symptoms in MS patients demonstrating a favorable impact on detrusor overactivity.”

https://www.ncbi.nlm.nih.gov/pubmed/29052091

Efficacy and Tolerability of Phytomedicines in Multiple Sclerosis Patients: A Review.

 CNS Drugs

“Multiple sclerosis (MS) is a chronic inflammatory and demyelinating disorder of the central nervous system (CNS) that can cause cognition, mobility, and sensory impairments. It is considered one of the most common non-traumatic causes of disability in the world.

The aim of the present article was to review the clinical evidence related to medicinal plants in the management of MS symptoms.

Electronic databases, including the Cochrane Library, Pubmed, and Scopus, were searched for entries from 1966 to February 2017. Only clinical studies were included in this review. Different medicinal plants have positive effects on MS, including Andrographis paniculata, Boswellia papyrifera, Ruta graveolens, Vaccinium spp., Camellia sinensis, Panax ginseng, Aloysia citrodora, Ginkgo biloba, Oenothera biennis, and Cannabis sativa.

C. sativa had the highest level of clinical evidence, supporting its efficacy in MS symptoms.

Proanthocyanidins, ginkgo flavone glycosides, ginsenosides, epigallocatechin-3-gallate, cannabinoids (including delta-9-tetrahydrocannabinol and cannabidiol), boswellic acid, and andrographolide were presented as the main bioactive components of medicinal plants with therapeutic benefits in MS.

The main complications of MS in which natural drugs were effective include spasticity, fatigue, scotoma, incontinence, urinary urgency, nocturia, memory performance, functional performance, and tremor. Herbal medicines were mostly well tolerated, and the adverse effects were limited to mild to moderate. Further well-designed human studies with a large sample size and longer follow-up period are recommended to confirm the role of medicinal plants and their metabolites in the management of MS.”

https://www.ncbi.nlm.nih.gov/pubmed/28948486

Treatment of human spasticity with delta 9-tetrahydrocannabinol.

Image result for J Clin Pharmacol.

“Spasticity is a common neurologic condition in patients with multiple sclerosis, stroke, cerebral palsy or an injured spinal cord. Animal studies suggest that THC has an inhibitory effect on polysynaptic reflexes.

Some spastic patients claim improvement after inhaling cannabis. We tested muscle tone, reflexes, strength and performed EMGs before and after double-blinded oral administration of either 10 or 5 mg THC or placebo.

10 mg THC significantly reduced spasticity by clinical measurement (P less than 0.01).

Responses varied, but benefit was seen in three of three patients with “tonic spasms.””

Managing neuropathic pain in multiple sclerosis: Pharmacological interventions.

Image result for University of New South Wales

“Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS). Of the plethora of motor and sensory disturbances experienced by sufferers, neuropathic pain is a highly prevalent and debilitating symptom, and at present remains extremely difficult to treat. Common forms of neuropathic pain seen in MS patients include central neuropathic pain, Lhermitte’s phenomenon and trigeminal neuralgia, which are all speculated to arise from specific patterns of lesion formation.

OBJECTIVE:

Efficacious pharmacological interventions for the treatment of neuropathic pain associated with MS are lacking, and have been largely informed by drug trials in peripheral neuropathies and spinal cord injury.

METHOD/RESULTS:

Neuropathic pain in MS is inadequately relieved by conventional analgesics, and first-line therapies are generally comprised of anti-depressive and anti-convulsive drugs. A range of alternatives have been proposed and tested with variable success, including cannabinoids and certain opioid analgesics. Animals with experimental autoimmune encephalomyelitis (EAE), an autoimmune model of MS, also exhibit neuropathic pain symptoms.

CONCLUSION:

Studies aimed at understanding the mechanisms underlying EAE-induced neuropathic pain and investigating the efficacy of novel pharmacological interventions at the animal level offer an exciting area of future research, and may inform future therapeutic options for MS-associated neuropathic pain.”

https://www.ncbi.nlm.nih.gov/pubmed/28875858

 

Systematic Review of the Costs and Benefits of Prescribed Cannabis-Based Medicines for the Management of Chronic Illness: Lessons from Multiple Sclerosis.

PharmacoEconomics

“Cannabis-based medicines (CBMs) may offer relief from symptoms of disease; however, their additional cost needs to be considered alongside their effectiveness. We sought to review the economic costs and benefits of prescribed CBMs in any chronic illness, and the frameworks used for their economic evaluation.

CONCLUSIONS:

Prescribed CBMs are a potentially cost-effective add-on treatment for MS spasticity; however, this evidence is uncertain. Further investment in randomised trials with in-built economic evaluations is warranted for a wider range of clinical indications.”

https://www.ncbi.nlm.nih.gov/pubmed/28866778

https://link.springer.com/article/10.1007%2Fs40273-017-0565-6

Modulation of Astrocyte Activity by Cannabidiol, a Nonpsychoactive Cannabinoid.

ijms-logo

“The astrocytes have gained in recent decades an enormous interest as a potential target for neurotherapies, due to their essential and pleiotropic roles in brain physiology and pathology. Their precise regulation is still far from understood, although several candidate molecules/systems arise as promising targets for astrocyte-mediated neuroregulation and/or neuroprotection.

The cannabinoid system and its ligands have been shown to interact and affect activities of astrocytes. Cannabidiol (CBD) is the main non-psychotomimetic cannabinoid derived from Cannabis. CBD is devoid of direct CB1 and CB2 receptor activity, but exerts a number of important effects in the brain. Here, we attempt to sum up the current findings on the effects of CBD on astrocyte activity, and in this way on central nervous system (CNS) functions, across various tested models and neuropathologies.

The collected data shows that increased astrocyte activity is suppressed in the presence of CBD in models of ischemia, Alzheimer-like and Multiple-Sclerosis-like neurodegenerations, sciatic nerve injury, epilepsy, and schizophrenia. Moreover, CBD has been shown to decrease proinflammatory functions and signaling in astrocytes.”

https://www.ncbi.nlm.nih.gov/pubmed/28788104

http://www.mdpi.com/1422-0067/18/8/1669