A natural product from Cannabis sativa subsp. sativa inhibits homeodomain-interacting protein kinase 2 (HIPK2), attenuating MPP+-induced apoptosis in human neuroblastoma SH-SY5Y cells.

Image result for Bioorg Chem

“Homeodomain-interacting protein kinase 2 (HIPK2) is a conserved serine/threonine kinase, which regulate transcription, cell differentiation, proliferation and apoptosis. Previous evidences indicated that HIPK2 could be involved in the pathogenesis of neurodegenerative diseases, suggesting as a novel target for Parkinson’s disease (PD) therapeutic development.

Herein, gene microarray analysis was performed to verify the key regulatory function of HIPK2 in PD. (Z)-methylp-hydroxycinnamate (ZMHC, 7) with other eighteen compounds were isolated from Cannabis sativa subsp. sativa, growing in Bama Yao Autonomous County, one of the five largest longevity regions of the world.

Intriguingly, ZMHC was identified to bind HIPK2 with high affinity through molecular modeling and molecular dynamics (MD) simulations. Moreover, cell morphology, flow cytometry and western blot assay suggested that ZMHC inhibited HIPK2, which attenuated MPP+-induced apoptosis in SH-SY5Y cells.

In conclusion, these findings discovered a natural product that inhibited HIPK2, and highlighted that ZMHC could be a potential precursor agent for future PD therapy.”

https://www.ncbi.nlm.nih.gov/pubmed/28366826

Study: Cannabinoids Limit Neuroblastoma Cell Proliferation

Study: Cannabinoids Limit Neuroblastoma Cell Proliferation

“The administration of the cannabinoids THC and CBD limit cancer activity in neuroblastoma cells in culture and in animals, according to preclinical data published in the journal Current Oncology.

Neuroblastoma is an aggressive form of childhood cancer that often goes inadequately addressed by conventional treatment.

Investigators reported that both types of cannabinoids reduced neuroblastoma cell viability, but that CBD demonstrated superior anti-cancer ability. The study is the first to document the anti-cancer properties of CBD in this particular cancerous cell line.

They concluded, “Our findings about the activity of CBD in nbl (neuroblastoma) support and extend previous findings about the anti-tumor activities of CBD in other tumors and suggest that cannabis extracts enriched in CBD and not in THC could be suitable for the development of novel non-psychotropic therapeutic strategies in nbl.”  http://enewspf.com/2016/04/21/study-cannabinoids-limit-neuroblastoma-cell-proliferation/

“In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma”  http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4791143/?report=reader

In vitro and in vivo efficacy of non-psychoactive cannabidiol in neuroblastoma.

“Neuroblastoma (nbl) is one of the most common solid cancers in children. Prognosis in advanced nbl is still poor despite aggressive multimodality therapy. Furthermore, survivors experience severe long-term multi-organ sequelae. Hence, the identification of new therapeutic strategies is of utmost importance.

Cannabinoids and their derivatives have been used for years in folk medicine and later in the field of palliative care. Recently, they were found to show pharmacologic activity in cancer, including cytostatic, apoptotic, and antiangiogenic effects.

We investigated, in vitro and in vivo, the anti-nbl effect of the most active compounds in Cannabis, Δ(9)-tetrahydrocannabinol (thc) and cannabidiol (cbd)…

Both compounds have antitumourigenic activity in vitro and impeded the growth of tumour xenografts in vivo. Of the two cannabinoids tested, cbd was the more active. Treatment with cbd reduced the viability and invasiveness of treated tumour cells in vitro and induced apoptosis. Moreover, cbd elicited an increase in activated caspase 3 in treated cells and tumour xenografts.

 

Our results demonstrate the antitumourigenic action of cbd on nbl cells. Because cbd is a nonpsychoactive cannabinoid that appears to be devoid of side effects, our results support its exploitation as an effective anticancer drug in the management of nbl.”

http://www.ncbi.nlm.nih.gov/pubmed/27022310

“Neuroblastomas are cancers that start in early nerve cells (called neuroblasts) of the sympathetic nervous system, so they can be found anywhere along this system.”  http://www.cancer.org/cancer/neuroblastoma/detailedguide/neuroblastoma-what-is-neuroblastoma

JWH-133, a Selective Cannabinoid CB2 Receptor Agonist, Exerts Toxic Effects on Neuroblastoma SH-SY5Y Cells.

“Endocannabinoid system plays an important role in the regulation of diverse physiological functions.

Although cannabinoid type 2 receptors (CB2) are involved in the modulation of immune system in peripheral tissues, recent findings demonstrated that they are also expressed in the central nervous system and could constitute a new target for the treatment of neurodegenerative disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/26842917

Cannabinoid inhibition of adenylate cyclase. Biochemistry of the response in neuroblastoma cell membranes.

“The inhibition of adenylate cyclase activity by cannabimimetic compounds in a membrane fraction from cultured neuroblastoma cells has been examined. The inhibition was shown to be concentration-dependent over a nanomolar range for both delta 9-tetrahydrocannabinol and its synthetic analog…

This study points to the similarities between the enzyme inhibition by cannabimimetic compounds and by muscarinic cholinergic compounds. It is inferred that the cannabimimetic compounds must act via regulatory mechanisms similar to those operating for receptor-mediated inhibition of adenylate cyclase.”

http://www.ncbi.nlm.nih.gov/pubmed/2984538

Cannabinoid inhibition of adenylate cyclase. Pharmacology of the response in neuroblastoma cell membranes.

“Adenylate cyclase in plasma membranes was inhibited by micromolar concentrations of delta 8-tetrahydrocannabinol and delta 9-tetrahydrocannabinol…

The inhibition of adenylate cyclase was specific for psychoactive cannabinoids, since cannabinol and cannabidiol produced minimal or no response…

Possible mechanisms for the effects of cannabinoid drugs on adenylate cyclase activity…”

http://www.ncbi.nlm.nih.gov/pubmed/6092901