High-Intensity Swimming Exercise Decreases Glutamate-Induced Nociception by Activation of G-Protein-Coupled Receptors Inhibiting Phosphorylated Protein Kinase A.

Image result for Mol Neurobiol.

“Several studies in humans have reported that improved pain control is associated with exercise in a variety of painful conditions, including osteoarthritis, fibromyalgia, and neuropathic pain.

Despite the growing amount of experimental data on physical exercise and nociception, the precise mechanisms through which high-intensity exercise reduces pain remain elusive.

Since the glutamatergic system plays a major role in pain transmission, we firstly analyzed if physical exercise could be able to decrease glutamate-induced nociception through G-protein-coupled receptor (G-PCR) activation.

The second purpose of this study was to examine the effect of exercising upon phosphorylation of protein kinase A (PKA) isoforms induced by intraplantar (i.pl.) glutamate injection in mice.

Our results demonstrate that high-intensity swimming exercise decreases nociception induced by glutamate and that i.pl. or intrathecal injections of cannabinoid, opioid, and adenosine receptor antagonists, AM281, naloxone, and 1,3-dipropyl-8-cyclopentylxanthine (DPCPX), respectively, prevent this effect.

Furthermore, the peripheral A1 and opioid receptors, but not CB1, are also involved in exercise’s effect. We also verified that glutamate injection increases levels of phosphorylated PKA (p-PKA). High-intensity swimming exercise significantly prevented p-PKA increase.

The current data show the direct involvement of the glutamatergic system on the hyponociceptive effect of high-intensity swimming exercise as well as demonstrate that physical exercise can activate multiple intracellular pathways through G-PCR activation, which share the same endogenous mechanism, i.e., inhibition of p-PKA.”

http://www.ncbi.nlm.nih.gov/pubmed/27624384

Evaluation of Two Commercially Available Cannabidiol Formulations for Use in Electronic Cigarettes.

Image result for Front Pharmacol.

“Since 24 states and the District of Columbia have legalized marijuana in some form, suppliers of legal marijuana have developed Cannabis sativa products for use in electronic cigarettes (e-cigarettes).

Personal battery powered vaporizers, or e-cigarettes, were developed to deliver a nicotine vapor such that smokers could simulate smoking tobacco without the inherent pathology of inhaled tobacco smoke. The liquid formulations used in these devices are comprised of an active ingredient such as nicotine mixed with vegetable glycerin (VG) and/or propylene glycol (PG) and flavorings.

A significant active ingredient of C. sativa, cannabidiol (CBD), has been purported to have anti-convulsant, anti-nociceptive, and anti-psychotic properties. These properties have potential medical therapies such as intervention of addictive behaviors, treatments for epilepsy, management of pain for cancer patients, and treatments for schizophrenia.

However, CBD extracted from C. sativa remains a DEA Schedule I drug since it has not been approved by the FDA for medical purposes.

Two commercially available e-cigarette liquid formulations reported to contain 3.3 mg/mL of CBD as the active ingredient were evaluated. These products are not regulated by the FDA in manufacturing or in labeling of the products and were found to contain 6.5 and 7.6 mg/mL of CBD in VG and PG with a variety of flavoring agents. Presently, while labeled as to content, the quality control of manufacturers and the relative safety of these products is uncertain.”

http://www.ncbi.nlm.nih.gov/pubmed/27621706

pain in Extrapyramidal Neurodegenerative Diseases.

Image result for Clin J Pain.

“Pain is one of the most common non-motor symptoms of Parkinson disease (PD) and other Parkinson plus syndromes, with a major effect on quality of life.

The aims of the study were to examine the prevalence and characteristics of pain in PD and other Parkinson plus syndromes and patient use and response to pain medications.

The most beneficial analgesics were nonsteroidal anti-inflammatory drugs and medical cannabis.”

http://www.ncbi.nlm.nih.gov/pubmed/27623111

A preliminary evaluation of the relationship of cannabinoid blood concentrations with the analgesic response to vaporized cannabis.

Image result for journal of pain research

“A randomized, placebo-controlled crossover trial utilizing vaporized cannabis containing placebo and 6.7% and 2.9% delta-9-tetrahydrocannabinol (THC) was performed in 42 subjects with central neuropathic pain related to spinal cord injury and disease.

Dose-dependent improvement in pain score was evident across all pain scale elements.

Plans for future work are outlined to explore the relationship of plasma concentrations with the analgesic response to different cannabinoids.

Such an appraisal of descriptors might contribute to the identification of distinct pathophysiologic mechanisms and, ultimately, the development of mechanism-based treatment approaches for neuropathic pain, a condition that remains difficult to treat.”

http://www.ncbi.nlm.nih.gov/pubmed/27621666

Activation of cannabinoid CB1 receptor contributes to suppression of spinal nociceptive transmission and inhibition of mechanical hypersensitivity by Aβ-fiber stimulation.

Image result for pain journal

“Activation of Aβ-fibers is an intrinsic feature of spinal cord stimulation (SCS) pain therapy.

Cannabinoid receptor type 1 (CB1) is important to neuronal plasticity and pain modulation, but its role in SCS-induced pain inhibition remains unclear.

In this study, we showed that CB1 receptors are expressed in both excitatory and inhibitory interneurons in substantia gelatinosa (SG).

Our findings suggest that activation of spinal CB1 receptors may contribute to synaptic depression to high-threshold afferent inputs in SG neurons after electrical stimulation of Aβ-fibers (Aβ-ES) and may be involved in SCS-induced inhibition of spinal nociceptive transmission after nerve injury.”

http://www.ncbi.nlm.nih.gov/pubmed/27589093

Dual-Acting Compounds Targeting Endocannabinoid and Endovanilloid Systems-A Novel Treatment Option for Chronic Pain Management.

Image result for Front Pharmacol.

“Compared with acute pain that arises suddenly in response to a specific injury and is usually treatable, chronic pain persists over time, and is often resistant to medical treatment.

Because of the heterogeneity of chronic pain origins, satisfactory therapies for its treatment are lacking, leading to an urgent need for the development of new treatments.

The leading approach in drug design is selective compounds, though they are often less effective and require chronic dosing with many side effects.

Herein, we review novel approaches to drug design for the treatment of chronic pain represented by dual-acting compounds, which operate at more than one biological target.

A number of studies suggest the involvement of the cannabinoid and vanilloid receptors in pain.

Interestingly cannabinoid system is in interrelation with other systems that comprise lipid mediators: prostaglandins, produced by COX enzyme.

Therefore, in the present review, we summarize the role of dual-acting molecules (FAAH/TRPV1 and FAAH/COX-2 inhibitors) that interact with endocannabinoid and endovanillinoid systems and act as analgesics by elevating the endogenously produced endocannabinoids and dampening the production of pro-inflammatory prostaglandins.

The plasticity of the endocannabinoid system (ECS) and the ability of a single chemical entity to exert an activity on two receptor systems has been developed and extensively investigated.

Here, we review up-to-date pharmacological studies on compounds interacting with FAAH enzyme together with TRPV1 receptor or COX-2 enzyme respectively.

Multi-target pharmacological intervention for treating pain may lead to the development of original and efficient treatments.”

http://www.ncbi.nlm.nih.gov/pubmed/27582708

Peltatoside Isolated from Annona crassiflora Induces Peripheral Antinociception by Activation of the Cannabinoid System.

Image result for Planta Med

“Peltatoside is a natural compound isolated from leaves of Annona crassiflora Mart., a plant widely used in folk medicine.

This substance is an analogue of quercetin, a flavonoid extensively studied because of its diverse biological activities, including analgesic effects. Besides, a previous study suggested, by computer structure analyses, a possible quercetin-CB1 cannabinoid receptor interaction.

Thus, the aim of this work was to assess the antinociceptive effect of peltatoside and analyze the cannabinoid system involvement in this action.

Our results suggest that this natural substance is capable of inducing analgesia through the activation of peripheral CB1 receptors, involving endocannabinoids in this process.”

http://www.ncbi.nlm.nih.gov/pubmed/27574895

Image result for Annona crassiflora Mart

Endocannabinoid mechanism for orofacial antinociception induced by electroacupuncture in acupoint St36 in rats.

Image result for Pharmacol Rep.

“This study was conducted with the aim of evaluating whether electroacupuncture (EA) at acupoint St36 could produce antinociception through the activation of an endocannabinoid mechanism.

CONCLUSION:

This study demonstrated for the first time that the CB1 cannabinoid receptor participates in the antinociceptive effect induced by EA.”

http://www.ncbi.nlm.nih.gov/pubmed/27573715

An analgesia circuit activated by cannabinoids.

“Although many anecdotal reports indicate that marijuana and its active constituent, delta-9-tetrahydrocannabinol (delta-9-THC), may reduce pain sensation, studies of humans have produced inconsistent results. In animal studies, the apparent pain-suppressing effects of delta-9-THC and other cannabinoid drugs are confounded by motor deficits. Here we show that a brainstem circuit that contributes to the pain-suppressing effects of morphine is also required for the analgesic effects of cannabinoids. Inactivation of the rostral ventromedial medulla (RVM) prevents the analgesia but not the motor deficits produced by systemically administered cannabinoids. Furthermore, cannabinoids produce analgesia by modulating RVM neuronal activity in a manner similar to, but pharmacologically dissociable from, that of morphine. We also show that endogenous cannabinoids tonically regulate pain thresholds in part through the modulation of RVM neuronal activity. These results show that analgesia produced by cannabinoids and opioids involves similar brainstem circuitry and that cannabinoids are indeed centrally acting analgesics with a new mechanism of action.”

http://www.ncbi.nlm.nih.gov/pubmed/9759727

Sex-dependent effects of cannabis-induced analgesia.

“Preclinical studies demonstrate that cannabinoid-mediated antinociceptive effects vary according to sex; it is unknown if these findings extend to humans.

These results indicate that in cannabis smokers, men exhibit greater cannabis-induced analgesia relative to women.

As such, sex-dependent differences in cannabis’s analgesic effects are an important consideration that warrants further investigation when considering the potential therapeutic effects of cannabinoids for pain relief.”

http://www.ncbi.nlm.nih.gov/pubmed/27522535