Inhibition of inflammatory hyperalgesia by activation of peripheral CB2 cannabinoid receptors.

“BACKGROUND:

Cannabinoid receptor agonists inhibit inflammatory hyperalgesia in animal models. Nonselective cannabinoid receptor agonists also produce central nervous system (CNS) side effects. Agonists selective for CB2 cannabinoid receptors, which are not found in the CNS, do not produce the CNS effects typical of nonselective cannabinoid receptor agonists but do inhibit acute nociception. The authors used the CB2 receptor-selective agonist AM1241 to test the hypothesis that selective activation of peripheral CB2 receptors inhibits inflammatory hyperalgesia.”

“CONCLUSIONS:

Local, peripheral CB2 receptor activation inhibits inflammation and inflammatory hyperalgesia. These results suggest that peripheral CB2 receptors may be an appropriate target for eliciting relief of inflammatory pain without the CNS effects of nonselective cannabinoid receptor agonists.”

http://www.ncbi.nlm.nih.gov/pubmed/14508331

Inhibition of pain responses by activation of CB(2) cannabinoid receptors.

Abstract

“Cannabinoid receptor agonists diminish responses to painful stimuli. Extensive evidence demonstrates that CB(1) cannabinoid receptor activation inhibits pain responses. Recently, the synthesis of CB(2) cannabinoid receptor-selective agonists has allowed testing whether CB(2) receptor activation inhibits pain. CB(2) receptor activation is sufficient to inhibit acute nociception, inflammatory hyperalgesia, and the allodynia and hyperalgesia produced in a neuropathic pain model. Studies using site-specific administration of agonist and antagonist have suggested that CB(2) receptor agonists inhibit pain responses by acting at peripheral sites. CB(2) receptor activation also inhibits edema and plasma extravasation produced by inflammation. CB(2) receptor-selective agonists do not produce central nervous system (CNS) effects typical of cannabinoids retaining agonist activity at the CB(1) receptor. Peripheral antinociception without CNS effects is consistent with the peripheral distribution of CB(2) receptors. CB(2) receptor agonists may have promise for the treatment of pain and inflammation without CNS side effects.”

http://www.ncbi.nlm.nih.gov/pubmed/12505700

CB2 cannabinoid receptor-mediated peripheral antinociception.

  “Cannabinoid receptor agonists diminish responses to painful stimuli. Extensive evidence implicates the CB(1) receptor in the production of antinociception. However, the capacity of CB(2) receptors, which are located outside the central nervous system (CNS), to produce antinociception is not known. Using AM1241, a CB(2) receptor-selective agonist, we demonstrate that CB(2) receptors produce antinociception to thermal stimuli… Peripheral antinociception without CNS effects is consistent with the peripheral distribution of CB(2) receptors. CB(2) receptor agonists may have promise clinically for the treatment of pain without CNS cannabinoid side effects.”

http://www.ncbi.nlm.nih.gov/pubmed/11514083

CB2 cannabinoid receptor activation produces antinociception by stimulating peripheral release of endogenous opioids.

  “CB(2) cannabinoid receptor-selective agonists are promising candidates for the treatment of pain. CB(2) receptor activation inhibits acute, inflammatory, and neuropathic pain responses but does not cause central nervous system (CNS) effects, consistent with the lack of CB(2) receptors in the normal CNS…

We have demonstrated that antinociception produced by CB2 receptor-selective agonists may be mediated by stimulation of β-endorphin release from CB2-expressing cells. The β-endorphin released thus appears to act at μ-opioid receptors, probably on the terminals of primary afferent neurons, to produce peripheral antinociception. This mechanism allows for the local release of endogenous opioids limited to sites where CB2 receptors are present, thereby leading to anatomical specificity of opioid effects. In this way, CB2 receptor activation may produce peripheral antinociception without CNS side effects.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC549497/

Involvement of peripheral cannabinoid and opioid receptors in β-caryophyllene-induced antinociception.

“BACKGROUND:

  β-caryophyllene (BCP) is a common constitute of the essential oils of numerous spice, food plants and major component in Cannabis. The present study investigated the contribution of peripheral cannabinoid (CB) and opioid systems in the antinociception produced by intraplantar (i.pl.) injection of BCP. The interaction between peripheral BCP and morphine was also examined.”

“CONCLUSIONS:

The present results demonstrate that antinociception produced by i.pl. BCP is mediated by activation of CB(2) receptors, which stimulates the local release from keratinocytes of the endogenous opioid β-endorphin. The combined injection of morphine and BCP may be an alternative in treating chemogenic pain.”

http://www.ncbi.nlm.nih.gov/pubmed/23138934

From cannabis to the endocannabinoid system: refocussing attention on potential clinical benefits.

Image result for West Indian Med J

“Cannabis sativa is one of the oldest herbal remedies known to man. Over the past four thousand years, it has been used for the treatment of numerous diseases but due to its psychoactive properties, its current medicinal usage is highly restricted. In this review, we seek to highlight advances made over the last forty years in the understanding of the mechanisms responsible for the effects of cannabis on the human body and how these can potentially be utilized in clinical practice. During this time, the primary active ingredients in cannabis have been isolated, specific cannabinoid receptors have been discovered and at least five endogenous cannabinoid neurotransmitters (endocannabinoids) have been identified. Together, these form the framework of a complex endocannabinoid signalling system that has widespread distribution in the body and plays a role in regulating numerous physiological processes within the body. Cannabinoid ligands are therefore thought to display considerable therapeutic potential and the drive to develop compounds that can be targeted to specific neuronal systems at low enough doses so as to eliminate cognitive side effects remains the ‘holy grail’ of endocannabinoid research.”

http://www.ncbi.nlm.nih.gov/pubmed/23155985

Inhibitors of monoacylglycerol lipase, fatty-acid amide hydrolase and endocannabinoid transport differentially suppress capsaicin-induced behavioral sensitization through peripheral endocannabinoid mechanisms

 “Monoacylglycerol lipase (MGL) and fatty acid amide hydrolase (FAAH) degrade the endocannabinoids 2-arachidonoylglycerol (2-AG) and anandamide (AEA), respectively… peripheral inhibition of enzymes hydrolyzing 2-AG and AEA suppresses capsaicin-evoked behavioral sensitization with distinct patterns of pharmacological specificity… Modulation of endocannabinoids in the periphery suppressed capsaicin-evoked nocifensive behavior and thermal hyperalgesia through either CB1 or CB2 receptor mechanisms but suppressed capsaicin-evoked mechanical allodynia through CB1 mechanisms only. Inhibition of endocannabinoid transport was more effective in suppressing capsaicin-induced sensitization compared to inhibition of either FAAH or MGL alone. These studies are the first to unveil the effects of pharmacologically increasing peripheral endocannabinoid levels on capsaicin-induced behavioral hypersensitivities. Our data suggest that 2-AG, the putative product of MGL inhibition, and AEA, the putative product of FAAH inhibition, differentially suppress capsaicin-induced nociception through peripheral cannabinoid mechanisms.”

“Cannabis has been used for centuries for its pain-relieving properties. The main active ingredient of cannabis, Δ9-tetrahydrocannabinol, produces antinociception by binding to G protein-coupled CB1 and CB2 receptors. Cannabinoids produce antinociception in animal models of both acute and chronic pain.”

Read more: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2900457/

FAAH and MAGL inhibitors: therapeutic opportunities from regulating endocannabinoid levels.

Abstract

 “Apart from their widespread recreational abuse, the psychoactive preparations of the plant Cannabis sativa and its major psychotropic component, Delta9-tetrahydrocannabinol (THC), are also known for their medicinal properties. Following the identification of receptors for THC – the cannabinoid CB1 and CB2 receptors – in mammals, various pharmaceutical strategies have attempted to exploit the properties of the cannabinoid system while minimizing psychotropic side effects. The cloning of the cannabinoid CB1 and CB2 receptors enabled the discovery of the endogenous agonists of the receptors, the endocannabinoids, and eventually led to the identification of enzymes that catalyze endocannabinoid inactivation. Unlike exogenously administered THC and synthetic CB1 and CB2 agonists, the endocannabinoids that are produced endogenously following the onset of several pathologies may act in a site- and time-specific manner to minimize the consequences of such conditions. This observation has suggested the possibility of targeting endocannabinoid-degrading enzymes to prolong the precisely regulated pro-homeostatic action of endocannabinoids. Two major enzymes have been cloned and investigated thoroughly: fatty acid amide hydrolase (FAAH) and monoacylglycerol lipase (MAGL). Inhibitors of these enzymes have demonstrated therapeutic benefit in animal models of several disorders, including neuropathic pain, anxiety and inflammatory bowel diseases, as well as against the proliferation and migration of cancer cells. This review describes the major biochemical properties of FAAH and MAGL, and the design and pharmacological properties of inhibitors of these enzymes.”

http://www.ncbi.nlm.nih.gov/pubmed/20047159

Therapeutic potential of endocannabinoid-hydrolysing enzyme inhibitors.

Abstract

“The specific protein target of delta9-tetrahydrocannabinol (delta9-THC), the main active ingredient of Cannabis sativa L., was characterized from rat brain nearly 20 years ago, and several endogenous compounds and proteins comprising the endocannabinoid (eCB) system have since been discovered. It has become evident that the eCB system consists of at least two cannabinoid receptors (i.e. the CB1 and CB2 receptors), in addition to their endogenous ligands (the eCBs) and several enzymes involved in the biosynthesis and catabolism of the eCBs. The two well-established eCBs, N-arachidonoylethanolamide (AEA) and 2-arachidonoylglycerol (2-AG), are produced by neurons on demand, act near their sites of synthesis and are effectively metabolized by fatty acid amide hydrolase (FAAH) and monoglyceride lipase (MGL), respectively. Inhibitors specifically targeting these enzymes could offer novel therapeutic approaches (e.g. for the treatment of pain and movement disorders). This MiniReview summarizes the literature concerning the potential therapeutic potential of FAAH and MGL inhibitors.”

http://www.ncbi.nlm.nih.gov/pubmed/17910610

A molecular basis of the therapeutic and psychoactive properties of cannabis (delta9-tetrahydrocannabinol).

Abstract

“All of the therapeutic properties of marihuana (analgesic, antiemetic, appetite stimulant, antiglaucoma) have been duplicated by the tetrahydrocannabinol (THC) molecule or its synthetic derivatives. Today, the molecular mechanisms of action of these compounds have led to a general understanding of the pharmacological effects of marihuana and of its therapeutic properties. These mechanisms involve the specific binding of THC to the 7-transmembrane (7TM) domain G protein-linked receptor, a molecular switch which regulates signal transduction in the cell membrane. The natural ligand of the 7TM receptor is an eicosanoid, arachidonylethanolamide (AEA), generated in the membrane and derived from arachidonic acid. THC acts as a substitute ligand to the 7TM receptor site of AEA. THC would deregulate the physiological function of the 7TM receptor and of its ligand AEA. As a result, the therapeutic effects of the drug may not be separated from its adverse psychoactive and cardiovascular effects. The binding of THC to the 7TM receptor site of AEA induces allosteric changes in the receptor sites of neurotransmitter and opiates resulting in variable interactions and pharmacological responses. The pharmacokinetics of THC with its prolonged storage in fat and its slow release result in variable and delayed pharmacological response, which precludes precise dosing to achieve timely therapeutic effects. The experimental use of THC and of its synthetic analogues, agonists, and antagonists has provided novel information in the nature of molecular signaling in the cell membrane. As a result, the relationships between allosteric receptor responsiveness, molecular configuration of proteins, and physiological regulation of cellular and organ function may be further investigated.”

http://www.ncbi.nlm.nih.gov/pubmed/12188105