Cannabinoid Receptors, Mental Pain and Suicidal Behavior: a Systematic Review.

Current Psychiatry Reports

“The current serotonin-based biological model of suicidal behavior (SB) may be too simplistic. There is emerging evidence that other biomarkers and biological systems may be involved in SB pathophysiology. The literature on the endocannabinoid (EC) systems and SB is limited. The objective of the present article is to review all available information on the relationship between cannabinoid receptors (CB1 and CB2 receptors), and SB and/or psychological pain.

RECENT FINDINGS:

Our review is limited by the small number and heterogeneity of studies identified: (1) an autopsy study describing elevated levels of CB1 receptor activity in the prefrontal cortex and suicide in both depression and alcoholism and (2) studies supporting the involvement of both CB1 and CB2 receptors in the regulation of neuropathic pain and stress-induced analgesia. We conclude that cannabinoid receptors, particularly CB1 receptors, may become promising targets for the development of novel therapeutic tools for the treatment of SB.”

https://www.ncbi.nlm.nih.gov/pubmed/29546501

https://link.springer.com/article/10.1007%2Fs11920-018-0880-4

Cannabinoid Receptors and the Endocannabinoid System: Signaling and Function in the Central Nervous System.

ijms-logo

“The biological effects of cannabinoids, the major constituents of the ancient medicinal plant Cannabis sativa (marijuana) are mediated by two members of the G-protein coupled receptor family, cannabinoid receptors 1 (CB1R) and 2. The CB1R is the prominent subtype in the central nervous system (CNS) and has drawn great attention as a potential therapeutic avenue in several pathological conditions, including neuropsychological disorders and neurodegenerative diseases. Furthermore, cannabinoids also modulate signal transduction pathways and exert profound effects at peripheral sites. Although cannabinoids have therapeutic potential, their psychoactive effects have largely limited their use in clinical practice. In this review, we briefly summarized our knowledge of cannabinoids and the endocannabinoid system, focusing on the CB1R and the CNS, with emphasis on recent breakthroughs in the field. We aim to define several potential roles of cannabinoid receptors in the modulation of signaling pathways and in association with several pathophysiological conditions. We believe that the therapeutic significance of cannabinoids is masked by the adverse effects and here alternative strategies are discussed to take therapeutic advantage of cannabinoids.”

https://www.ncbi.nlm.nih.gov/pubmed/29533978

http://www.mdpi.com/1422-0067/19/3/833

Anticonvulsive effects of endocannabinoids; an investigation to determine the role of regulatory components of endocannabinoid metabolism in the Pentylenetetrazol induced tonic- clonic seizures.

Metabolic Brain Disease

“2-Arachidonoylglycerol (2-AG) and anandamide are two major endocannabinoids produced, released and eliminated by metabolic pathways.

Anticonvulsive effect of 2-AG and CB1 receptor is well-established. Herein, we designed to investigate the anticonvulsive influence of key components of the 2-AG and anandamide metabolism.

It seems extracellular accumulation of 2-AG or anandamide has anticonvulsive effect through the CB1 receptor, while intracellular anandamide accumulation is proconvulsive through TRPV1.”

https://www.ncbi.nlm.nih.gov/pubmed/29504066

https://link.springer.com/article/10.1007%2Fs11011-018-0195-5

Alterations of endocannabinoids in cerebrospinal fluid of dogs with epileptic seizure disorder.

Image result for bmc veterinary research

“Epilepsy is one of the most common chronic neurological disorders in dogs characterized by recurrent seizures. The endocannabinoid (EC) system plays a central role in suppressing pathologic neuronal excitability and in controlling the spread of activity in an epileptic network. Endocannabinoids are released on demand and their dysregulation has been described in several pathological conditions. Recurrent seizures may lead to an adverse reorganization of the EC system and impairment of its protective effect. In the current study, we tested the hypothesis that cerebrospinal fluid (CSF) concentrations of the endocannabinoids anandamide (AEA) and 2-arachidonoyl glycerol (2AG) are altered in epileptic dogs. Concentrations of AEA and total AG (sum of 2AG and 1AG) were measured in 40 dogs with idiopathic epilepsy and in 16 unaffected, healthy control dogs using liquid chromatography combined with tandem mass spectrometry.

RESULTS:

AEA and total AG were measured at 4.94 (3.18 – 9.17) pM and 1.43 (0.90 – 1.92) nM in epileptic dogs and at 3.19 (2.04 – 4.28) pM and 1.76 (1.08 – 2.69) nM in the control group, respectively (median, 25 – 75% percentiles in brackets). The AEA difference between epileptic and healthy dogs was statistically significant (p < 0.05). Values correlated with seizure severity and duration of seizure activity. Dogs with cluster seizures and/or status epilepticus and with seizure activity for more than six months displayed the highest EC concentrations.

CONCLUSION:

In conclusion, we present the first endocannabinoid measurements in canine CSF and confirm the hypothesis that the EC system is altered in canine idiopathic epilepsy.”

https://www.ncbi.nlm.nih.gov/pubmed/24370333

“In conclusion, we demonstrated an elevation of CSF AEA concentrations in dogs with idiopathic epilepsy. The highest AEA concentrations were found in dogs with severe seizures and a long disease history. Possibly, the activation of the EC system serves as a counter-mechanism in order to regulate the seizure-threshold in epilepsy. However, the EC system can either alter or be altered by seizure activity, so that further, prospective studies are warranted to investigate pathological mechanisms. Despite endocannabinoids can be synthesized “on demand”, the EC system should be considered for development of new treatment strategies against epilepsy.”

https://bmcvetres.biomedcentral.com/articles/10.1186/1746-6148-9-262

Endocannabinoid tone regulates human sebocyte biology.

JID home

“We have previously shown that i) endocannabinoids (eCB; e.g. anandamide [AEA]) are involved in the maintenance of homeostatic sebaceous lipid production (SLP) in human sebaceous glands (SG); and ii) eCB treatment dramatically increases SLP. Here, we aimed to investigate the expression of the major eCB synthesizing and degrading enzymes, and to study the effects of eCB uptake inhibitors on human SZ95 sebocytes, thus exploring the role of the putative eCB membrane transporter (EMT), which has been hypothesized to facilitate the cellular uptake and subsequent degradation of eCBs. We found that the major eCB synthesizing (NAPE-PLD, DAGLα and -β) and degrading (FAAH, MAGL) enzymes are expressed in SZ95 sebocytes, and also in SGs (except for DAGLα, whose staining was dubious in histological preparations). Interestingly, eCB uptake-inhibition with VDM11 induced a moderate increase in SLP, and also elevated the levels of various eCBs and related acylethanolamides. Finally, we found that VDM11 was able to interfere with the pro-inflammatory action of the Toll-like receptor 4 activator lipopolysaccharide. Collectively, our data suggest that inhibition of eCB uptake exerts anti-inflammatory actions and elevates both SLP and eCB levels; thus, these inhibitors might be beneficial in cutaneous inflammatory conditions accompanied by dry skin.”

https://www.ncbi.nlm.nih.gov/pubmed/29501385

http://www.jidonline.org/article/S0022-202X(18)30147-7/pdf

Evaluation of Marijuana Compounds on Neuroimmune Endpoints in Experimental Autoimmune Encephalomyelitis.

Current Protocols in Toxicology

“Cannabinoid compounds refer to a group of more than 60 plant-derived compounds in Cannabis sativa, more commonly known as marijuana. Exposure to marijuana and cannabinoid compounds has been increasing due to increased societal acceptance for both recreational and possible medical use. Cannabinoid compounds suppress immune function, and while this could compromise one’s ability to fight infections, immune suppression is the desired effect for therapies for autoimmune diseases. It is critical, therefore, to understand the effects and mechanisms by which cannabinoid compounds alter immune function, especially immune responses induced in autoimmune disease. Therefore, this unit will describe induction and assessment of the experimental autoimmune encephalomyelitis (EAE) model of multiple sclerosis (MS), and its potential alteration by cannabinoid compounds. The unit includes three approaches to induce EAE, two of which provide correlations to two forms of MS, and the third specifically addresses the role of autoreactive T cells in EAE.”

https://www.ncbi.nlm.nih.gov/pubmed/29512125

http://onlinelibrary.wiley.com/doi/10.1002/cptx.43/abstract

The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: Role of neurogenesis and dendritic remodeling.

 Cover image

“Repeated injections of cannabidiol (CBD), the major non-psychotomimetic compound present in the Cannabis sativa plant, attenuate the anxiogenic effects induced by Chronic Unpredictable Stress (CUS). The specific mechanisms remain to be fully understood but seem to involve adult hippocampal neurogenesis and recruitment of endocannabinoids.

Here we investigated for the first time if the behavioral and pro-neurogenic effects of CBD administered concomitant the CUS procedure (14 days) are mediated by CB1, CB2 or 5HT1A receptors, as well as CBD effects on dendritic remodeling and on intracellular/synaptic signaling (fatty acid amide hydrolase – FAAH, Akt, GSK3β and the synaptic proteins Synapsin Ia/b, mGluR1 and PSD95).

After 14 days, CBD injections (30 mg/kg) induced anxiolytic responses in stressed animals in the elevated plus-maze and novelty suppressed feeding tests, that were blocked by pre-treatment with a CB1 (AM251, 0.3 mg/kg) or CB2 (AM630, 0.3 mg/kg), but not by a 5HT1A (WAY100635, 0.05 mg/kg) receptor antagonist. Golgi staining and immunofluorescence revealed that these effects were associated with an increase in hippocampal neurogenesis and spine density in the dentate gyrus of the hippocampus. AM251 and AM630 abolished the effects of CBD on spines density. However, AM630 was more effective in attenuating the pro-neurogenic effects of CBD. CBD decreased FAAH and increased p-GSK3β expression in stressed animals, which was also attenuated by AM630.

These results indicate that CBD prevents the behavioral effects caused by CUS probably due to a facilitation of endocannabinoid neurotransmission and consequent CB1/CB2receptors activation, which could recruit intracellular/synaptic proteins involved in neurogenesis and dendritic remodeling.”

https://www.ncbi.nlm.nih.gov/pubmed/29510186

https://www.sciencedirect.com/science/article/pii/S0028390818301023

The inhibition of CB1 receptor accelerates the onset and development of EAE possibly by regulating microglia/macrophages polarization.

Journal of Neuroimmunology

“Cannabinoid 1 receptor (CB1R) regulates the neuro-inflammatory and neurodegenerative damages of experimental autoimmune encephalomyelitis (EAE) and of multiple sclerosis (MS). The mechanism by which CB1R inhibition exerts inflammatory effects is still unclear. Here, we explored the cellular and molecular mechanisms of CB1R in the treatment of EAE by using a specific and selective CB1R antagonist SR141716A. Our study demonstrated that SR141716A accelerated the clinical onset and development of EAE, accompanied by body weight loss. SR141716A significantly up-regulated the expression of toll like receptor-4 (TLR-4) and nuclear factor-kappaB/p65 (NF-κB/p65) on microglia/macrophages of EAE mice as well as levels of inflammatory factors (TNF-α, IL-1β, IL-6) and chemokines (MCP-1, CX3CL1), accompanied by the shifts of cytokines from Th2 (IL-4, IL-10) to Th1 (IFN-γ)/Th17 (IL-17) in the spinal cords of EAE mice. Similar changes happened on splenic mononuclear cells (MNCs) except chemokine CX3CL1. Consistently, SR141716A promoted BV-2 microglia to release inflammatory factors (TNF-α, IL-1β, IL-6) while inhibited the production of IL-10 and chemokines (MCP-1, CX3CL1). Furthermore, when splenic CD4+ T cells co-cultured with SR141716A-administered BV-2 microglia, the levels of IL-4 and IL-10 were decreased while production of IL-17 and IFN-γ increased significantly. Our research indicated that inhibition of CB1R induced M1 phenotype-Th17 axis changed of microglia/macrophages through TLR-4 and NF-κB/p65 which accelerated the onset and development of EAE. Therefore, CB1R may be a promising target for the treatment of MS/EAE, but its complexity remains to be carefully considered and studied in further clinical application.”

https://www.ncbi.nlm.nih.gov/pubmed/29501084

http://www.jni-journal.com/article/S0165-5728(17)30467-8/fulltext

β-Amyrin, the cannabinoid receptors agonist, abrogates mice brain microglial cells inflammation induced by lipopolysaccharide/interferon-γ and regulates Mφ1/Mφ2 balances.

Image result for Biomed Pharmacother.

“Inflammation is a primary response to infection that can pathologically lead to various diseases including neurodegenerative diseases.

The purpose of this study was to evaluate the effect of β-Amyrin, a naturally occurring pentacyclic triterpenoid compound, on inflammation induced by lipopolysaccharide (LPS) and interferone-γ (IFN-γ) in rat microglial cells.

CONCLUSION:

β-Amyrin reduces inflammation in microglial cells and can be used as a potential anti-inflammatory agent in central nervous system neurodegenerative diseases such as Alzheimer and multiple sclerosis, by affecting the inflammatory cytokine and differentiation of microglia as resident CNS macrophages.”

https://www.ncbi.nlm.nih.gov/pubmed/29501766

“Amyrin and the endocannabinoid system. The canonical triterpene amyrin was recently suggested to bind to CB1 receptors and to significantly mediate cannabimimetic effects in animal models of pain.”   http://gertschgroup.com/blog/entry/3188293/amyrin-and-the-endocannabinoid-system

“The antinociceptive triterpene β-amyrin inhibits 2-arachidonoylglycerol (2-AG) hydrolysis without directly targeting CB receptors”   https://www.researchgate.net/publication/225079976_The_antinociceptive_triterpene_b-amyrin_inhibits_2-arachidonoylglycerol_2-AG_hydrolysis_without_directly_targeting_CB_receptors

“Finally, pentacyclic triterpenes such as β-amyrin and cycloartenol have been shown to possess numerous biological activities including anti-bacterial, anti-fungal, anti-inflammatory and anti-cancer properties.” https://www.linkedin.com/pulse/cannabis-has-terpenes-say-what-pure-hempnotics

Image result for β-Amyrin

Absence of cannabinoid 1 receptor in beta cells protects against high-fat/high-sugar diet-induced beta cell dysfunction and inflammation in murine islets.

Diabetologia

“The cannabinoid 1 receptor (CB1R) regulates insulin sensitivity and glucose metabolism in peripheral tissues. CB1R is expressed on pancreatic beta cells and is coupled to the G protein Gαi, suggesting a negative regulation of endogenous signalling in the beta cell.

To assess the direct contribution of beta cell CB1R to metabolism, we designed a mouse model that allows us to determine the role of CB1R specifically in beta cells in the context of whole-body metabolism.

CONCLUSIONS/INTERPRETATION:

Our data demonstrate CB1R to be a negative regulator of beta cell function and a mediator of islet inflammation under conditions of metabolic stress. Our findings point to beta cell CB1R as a therapeutic target, and broaden its potential to include anti-inflammatory effects in both major forms of diabetes.”

https://www.ncbi.nlm.nih.gov/pubmed/29497784

https://link.springer.com/article/10.1007%2Fs00125-018-4576-4