Cannabinoid signalling in the enteric nervous system.

Abstract

“Cannabinoid signalling is an important mechanism of synaptic modulation in the nervous system. Endogenous cannabinoids (anandamide and 2-arachidonyl-glycerol) are synthesized and released via calcium-activated biosynthetic pathways. Exogenous cannabinoids and endocannabinoids act on CB1 and CB2 receptors. CB1 receptors are neuronal receptors which couple via G-proteins to inhibition of adenylate cyclase or to activation or inhibition of ion channels. CB2 receptors are expressed by immune cells and cannabinoids can suppress immune function. In the central nervous system, the endocannabinoids may function as retrograde signals released by the postsynaptic neuron to inhibit neurotransmitter release from presynaptic nerve terminals. Enteric neurons also express CB receptors. Exogenously applied CB receptor agonists inhibit enteric neuronal activity but it is not clear if endocannabinoids released by enteric neurons can produce similar responses in the enteric nervous system (ENS). In this issue of Neurogastroenterology and Motility, Boesmans et al. show that CB1 receptor activation on myenteric neurons maintained in primary culture can suppress neuronal activity, inhibit synaptic transmission and mitochondrial transport along axons. They also provide initial evidence that myenteric neurons (or other cell types present in the cultures) release endocannabinoids and which activate CB1 receptors constitutively. These data provide new information about targets for cannabinoid signalling in the ENS and highlight the potential importance of CB receptors as drug targets. It is necessary that future work extends these interesting findings to intact tissues and ideally to the in vivo setting.”

http://www.ncbi.nlm.nih.gov/pubmed/19689654

The neurobiology and evolution of cannabinoid signalling.

Abstract

“The plant Cannabis sativa has been used by humans for thousands of years because of its psychoactivity. The major psychoactive ingredient of cannabis is Delta(9)-tetrahydrocannabinol, which exerts effects in the brain by binding to a G-protein-coupled receptor known as the CB1 cannabinoid receptor. The discovery of this receptor indicated that endogenous cannabinoids may occur in the brain, which act as physiological ligands for CB1. Two putative endocannabinoid ligands, arachidonylethanolamide (‘anandamide’) and 2-arachidonylglycerol, have been identified, giving rise to the concept of a cannabinoid signalling system. Little is known about how or where these compounds are synthesized in the brain and how this relates to CB1 expression. However, detailed neuroanatomical and electrophysiological analysis of mammalian nervous systems has revealed that the CB1 receptor is targeted to the presynaptic terminals of neurons where it acts to inhibit release of ‘classical’ neurotransmitters. Moreover, an enzyme that inactivates endocannabinoids, fatty acid amide hydrolase, appears to be preferentially targeted to the somatodendritic compartment of neurons that are postsynaptic to CB1-expressing axon terminals. Based on these findings, we present here a model of cannabinoid signalling in which anandamide is synthesized by postsynaptic cells and acts as a retrograde messenger molecule to modulate neurotransmitter release from presynaptic terminals. Using this model as a framework, we discuss the role of cannabinoid signalling in different regions of the nervous system in relation to the characteristic physiological actions of cannabinoids in mammals, which include effects on movement, memory, pain and smooth muscle contractility. The discovery of the cannabinoid signalling system in mammals has prompted investigation of the occurrence of this pathway in non-mammalian animals. Here we review the evidence for the existence of cannabinoid receptors in non-mammalian vertebrates and invertebrates and discuss the evolution of the cannabinoid signalling system. Genes encoding orthologues of the mammalian CB1 receptor have been identified in a fish, an amphibian and a bird, indicating that CB1 receptors may occur throughout the vertebrates. Pharmacological actions of cannabinoids and specific binding sites for cannabinoids have been reported in several invertebrate species, but the molecular basis for these effects is not known. Importantly, however, the genomes of the protostomian invertebrates Drosophila melanogaster and Caenorhabditis elegans do not contain CB1 orthologues, indicating that CB1-like cannabinoid receptors may have evolved after the divergence of deuterostomes (e.g. vertebrates and echinoderms) and protostomes. Phylogenetic analysis of the relationship of vertebrate CB1 receptors with other G-protein-coupled receptors reveals that the paralogues that appear to share the most recent common evolutionary origin with CB1 are lysophospholipid receptors, melanocortin receptors and adenosine receptors. Interestingly, as with CB1, each of these receptor types does not appear to have Drosophila orthologues, indicating that this group of receptors may not occur in protostomian invertebrates. We conclude that the cannabinoid signalling system may be quite restricted in its phylogenetic distribution, probably occurring only in the deuterostomian clade of the animal kingdom and possibly only in vertebrates.”

http://www.ncbi.nlm.nih.gov/pubmed/11316486

Cannabinoid receptors: nomenclature and pharmacological principles.

Abstract

“The CB1 and CB2 cannabinoid receptors are members of the G protein-coupled receptor (GPCR) family that are pharmacologically well defined. However, the discovery of additional sites of action for endocannabinoids as well as synthetic cannabinoid compounds suggests the existence of additional cannabinoid receptors. Here we review this evidence, as well as the current nomenclature for classifying a target as a cannabinoid receptor. Basic pharmacological definitions, principles and experimental conditions are discussed in order to place in context the mechanisms underlying cannabinoid receptor activation. Constitutive (agonist-independent) activity is observed with the overexpression of many GPCRs, including cannabinoid receptors. Allosteric modulators can alter the pharmacological responses of cannabinoid receptors. The complex molecular architecture of each of the cannabinoid receptors allows for a single receptor to recognize multiple classes of compounds and produce an array of distinct downstream effects. Natural polymorphisms and alternative splice variants may also contribute to their pharmacological diversity. As our knowledge of the distinct differences grows, we may be able to target select receptor conformations and their corresponding pharmacological responses. Importantly, the basic biology of the endocannabinoid system will continue to be revealed by ongoing investigations.”

http://www.ncbi.nlm.nih.gov/pubmed/22421596

Cannabis and cannabinoid receptors.

Abstract

“Cannabis and cannabinoids exert many of their biological functions through receptor-mediated mechanisms. Two types of cannabinoid receptors have been identified, namely CB(1) and CB(2), both coupled to a G protein. CB(1) receptors have been detected in the central nervous system (where they are responsible for the characteristic effects of Cannabis, including catalepsy, depression of motor activity, analgesia and feelings of relaxation and well being) and in peripheral neurons (where their activation produces a suppression in neurotransmitter release in the heart, bladder, intestine and vas deferens). Cannabinoid CB(2) receptors have only been detected outside the central nervous system, mostly in cells of the immune system, presumably mediating cannabinoid-induced immunosuppression and antinflammatory effects. With the discovery of cannabinoid receptors for exogenous cannabinoids, also endogenous cannabinoids (anandamide, 2-arachidonylglycerol) have been described.”

http://www.ncbi.nlm.nih.gov/pubmed/10930707

Recent advantages in cannabinoid research.

Abstract

“Although the active component of cannabis Delta9-THC was isolated by our group 35 years ago, until recently its mode of action remained obscure. In the last decade it was established that Delta9-THC acts through specific receptors – CB1 and CB2 – and mimics the physiological activity of endogenous cannabinoids of two types, the best known representatives being arachidonoylethanolamide (anandamide) and 2-arachidonoylglycerol (2-AG). THC is officially used against vomiting caused by cancer chemotherapy and for enhancing appetite, particularly in AIDS patients. Illegally, usually by smoking marijuana, it is used for ameliorating the symptoms of multiple sclerosis, against pain, and in a variety of other diseases. A synthetic cannabinoid, HU-211, is in advanced clinical tests against brain damage caused by closed head injury. It may prove to be valuable against stroke and other neurological diseases.”

http://www.ncbi.nlm.nih.gov/pubmed/10575284

Regulation of nausea and vomiting by cannabinoids.

“Anti-emetic effects of cannabinoids in human clinical trials”

  “Considerable evidence demonstrates that manipulation of the endocannabinoid system regulates nausea and vomiting in humans and other animals. The anti-emetic effect of cannabinoids has been shown across a wide variety of animals that are capable of vomiting in response to a toxic challenge. CB1 agonism suppresses vomiting, which is reversed by CB1 antagonism, and CB1 inverse agonism promotes vomiting. Recently, evidence from animal experiments suggests that cannabinoids may be especially useful in treating the more difficult to control symptoms of nausea and anticipatory nausea in chemotherapy patients, which are less well controlled by the currently available conventional pharmaceutical agents. Although rats and mice are incapable of vomiting, they display a distinctive conditioned gaping response when re-exposed to cues (flavours or contexts) paired with a nauseating treatment. Cannabinoid agonists (Δ9-THC, HU-210) and the fatty acid amide hydrolase (FAAH) inhibitor, URB-597, suppress conditioned gaping reactions (nausea) in rats as they suppress vomiting in emetic species. Inverse agonists, but not neutral antagonists, of the CB1 receptor promote nausea, and at subthreshold doses potentiate nausea produced by other toxins (LiCl). The primary non-psychoactive compound in cannabis, cannabidiol (CBD), also suppresses nausea and vomiting within a limited dose range. The anti-nausea/anti-emetic effects of CBD may be mediated by indirect activation of somatodendritic 5-HT1A receptors in the dorsal raphe nucleus; activation of these autoreceptors reduces the release of 5-HT in terminal forebrain regions. Preclinical research indicates that cannabinioids, including CBD, may be effective clinically for treating both nausea and vomiting produced by chemotherapy or other therapeutic treatments.”

“The cannabis plant has been used for several centuries for a number of therapeutic applications, including the attenuation of nausea and vomiting. Ineffective treatment of chemotherapy-induced nausea and vomiting prompted oncologists to investigate the anti-emetic properties of cannabinoids in the late 1970s and early 1980s, before the discovery of the 5-HT3 antagonists. The first cannabinoid agonist, nabilone (Cesamet), which is a synthetic analogue of Δ9-THC was specifically licensed for the suppression of nausea and vomiting produced by chemotherapy. Furthermore, synthetic Δ9-THC, dronabinol, entered the clinic as Marinol in 1985 as an anti-emetic and in 1992 as an appetite stimulant. In these early studies, several clinical trials compared the effectiveness of Δ9-THC with placebo or other anti-emetic drugs. Comparisons of oral Δ9-THC with existing anti-emetic agents generally indicated that Δ9-THC was at least as effective as the dopamine antagonists, such as prochlorperazine.”

“There is some evidence that cannabis-based medicines may be effective in treating the more difficult to control symptoms of nausea and delayed nausea and vomiting in children. Abrahamov et al. (1995) evaluated the anti-emetic effectiveness of Δ8-THC, a close but less psychoactive relative of Δ9-THC, in children receiving chemotherapy treatment. Two hours before the start of each cancer treatment and every six hours thereafter for 24 h, the children were given Δ8-THC as oil drops on the tongue or in a bite of food. After a total of 480 treatments, the only side effects reported were slight irritability in two of the youngest children (3.5 and 4 years old); both acute and delayed nausea and vomiting were controlled.”

“Chemotherapy-induced vomiting is well controlled in most patients by conventionally available drugs, nausea (acute, delayed and anticipatory) continues to be a challenge. Nausea is often reported as more distressing than vomiting, because it is a continuous sensation. Indeed, this distressing symptom of chemotherapy treatment (even when vomiting is pharmacologically controlled) can become so severe that as many as 20% of patients discontinue the treatment. Both preclinical and human clinical research suggests that cannabinoid compounds may have promise in treating nausea in chemotherapy patients.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3165951/

The emerging role of cannabinoid neuromodulators in symptom management.

Abstract

“INTRODUCTION:

The cannabinoids nabilone (Cesamet) and dronabinol (Marinol) are indicated for the management of chemotherapy-induced nausea and vomiting (CINV) in cancer patients who have failed to respond adequately to conventional antiemetic therapy.

DISCUSSION:

The endocannabinoid (CB) system interacts with numerous other systems and pharmaceutical cannabinoids target ubiquitous CB1 and CB2 receptors in the central nervous system and periphery, relieving nausea and vomiting and pain.

SUMMARY:

The benefits of this novel class of medications in cancer may extend beyond CINV, as indicated by data from preclinical studies and animal models.”

http://www.ncbi.nlm.nih.gov/pubmed/17139494

Antitumor effects of ajulemic acid (CT3), a synthetic non-psychoactive cannabinoid.

Abstract

   “One of the endogenous transformation products of tetrahydrocannabinol (THC) is THC-11-oic acid, and ajulemic acid (AJA; dimethylheptyl-THC-11-oic acid) is a side-chain synthetic analog of THC-11-oic acid. In preclinical studies, AJA has been found to be a potent anti-inflammatory agent without psychoactive properties. Based on recent reports suggesting antitumor effects of cannabinoids (CBs), we assessed the potential of AJA as an antitumor agent. AJA proved to be approximately one-half as potent as THC in inhibiting tumor growth in vitro against a variety of neoplastic cell lines. However, its in vitro effects lasted longer. The antitumor effect was stereospecific, suggesting receptor mediation. Unlike THC, however, whose effect was blocked by both CB(1) and CB(2) receptor antagonists, the effect of AJA was inhibited by only the CB(2) antagonist. Additionally, incubation of C6 glioma cells with AJA resulted in the formation of lipid droplets, the number of which increased over time; this effect was noted to a much greater extent after AJA than after THC and was not seen in WI-38 cells, a human normal fibroblast cell line. Analysis of incorporation of radiolabeled fatty acids revealed a marked accumulation of triglycerides in AJA-treated cells at concentrations that produced tumor growth inhibition. Finally, AJA, administered p.o. to nude mice at a dosage several orders of magnitude below that which produces toxicity, inhibited the growth of subcutaneously implanted U87 human glioma cells modestly but significantly. We conclude that AJA acts to produce significant antitumor activity and effects its actions primarily via CB(2) receptors. Its very favorable toxicity profile, including lack of psychoactivity, makes it suitable for chronic usage. Further studies are warranted to determine its optimal role as an antitumor agent.”

http://www.ncbi.nlm.nih.gov/pubmed/11551521

A peripheral cannabinoid mechanism suppresses spinal fos protein expression and pain behavior in a rat model of inflammation.

  “The present studies were conducted to test the hypothesis that systemically inactive doses of cannabinoids suppress inflammation-evoked neuronal activity in vivo via a peripheral mechanism…

…These data provide direct evidence that a peripheral cannabinoid mechanism suppresses the development of inflammation-evoked neuronal activity at the level of the spinal dorsal horn and implicate a role for CB(2) and CB(1) in peripheral cannabinoid modulation of inflammatory nociception.”

http://www.ncbi.nlm.nih.gov/pubmed/12617970

Activation of peripheral cannabinoid CB1 and CB2 receptors suppresses the maintenance of inflammatory nociception: a comparative analysis

“Effects of locally administered agonists and antagonists for cannabinoid CB1 and CB2 receptors on mechanical and thermal hypersensitivity were compared after the establishment of chronic inflammation.”

“Cannabinoids act locally through distinct CB1 and CB2 mechanisms to suppress mechanical hypersensitivity after the establishment of chronic inflammation, at doses that produced modest changes in thermal hyperalgesia. Additive antihyperalgesic effects were observed following prophylactic co-administration of the CB1– and CB2-selective agonists. Our results suggest that peripheral cannabinoid antihyperalgesic actions may be exploited for treatment of inflammatory pain states.”

“In summary, our results demonstrate that selective activation of CB1 or CB2 receptors in the inflamed paw is sufficient to suppress tactile allodynia and mechanical hyperalgesia. This suppression is observed under conditions in which only a partial suppression of thermal hyperalgesia was observed. Collectively, our data suggest that peripheral cannabinoid analgesic mechanisms may be exploited to suppress the tactile hypersensitivity observed in chronic inflammatory pain states.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2042894/