The cannabinoid system and immune modulation

Figure 1.

“Studies on the effects of marijuana smoking have evolved into the discovery and description of the endocannabinoid system. To date, this system is composed of two receptors, CB1 and CB2, and endogenous ligands including anandamide, 2-arachidonoyl glycerol, and others. CB1 receptors and ligands are found in the brain as well as immune and other peripheral tissues. Conversely, CB2 receptors and ligands are found primarily in the periphery, especially in immune cells. Cannabinoid receptors are G protein-coupled receptors, and they have been linked to signaling pathways and gene activities in common with this receptor family. In addition, cannabinoids have been shown to modulate a variety of immune cell functions in humans and animals and more recently, have been shown to modulate T helper cell development, chemotaxis, and tumor development. Many of these drug effects occur through cannabinoid receptor signaling mechanisms and the modulation of cytokines and other gene products.

It appears the immunocannabinoid system is involved in regulating the brain-immune axis and might be exploited in future therapies for chronic diseases and immune deficiency.”

“The medicinal uses of marijuana were described centuries ago for diseases such as asthma, migraine, pain, convulsions, and anxiety (reviewed in ref.). More recently, emphasis has been placed on marijuana’s putative, beneficial effects on appetite, glaucoma, spasticity in multiple sclerosis, pain, and inflammation.

Recent experimental evidence supports marijuana’s therapeutic potential in some of these maladies.

The active plant ingredients in marijuana belong to the C21-cannabinoid compounds including the primary psychoactive compound, Δ9-tetrahydrocannabinol (THC). This cannabinoid along with others such as Δ8-THC, cannabidiol, and cannabinol, as well as chemical analogs, have been extensively studied over the years for their biological and therapeutic properties. Some of the properties of these agents have included effects on immunity ranging from suppression of resistance to infection to enhancement of IL-1 production by macrophages. These early studies about the immunomodulating effects of these drugs have been the subject of previous overviews and will not be reviewed here. Instead, we will briefly summarize the general features of the cannabinoid system and review recent findings on the structure and function of the cannabinoid system components in the immune system. For convenience, we will refer to this as the “immunocannabinoid” system.

CANNABINOID SYSTEM

Marijuana cannabinoids, analogs, and endocannabinoids”

https://jlb.onlinelibrary.wiley.com/doi/full/10.1189/jlb.0303101?sid=nlm%3Apubmed

From endocannabinoid profiling to ‘endocannabinoid therapeutics’.

Abstract

“The discovery of the endocannabinoid signalling system, that is, of cannabinoid receptors, their endogenous ligands, known as endocannabinoids, and of endocannabinoid anabolic and catabolic enzymes, raised several questions regarding the physiopathological role of these mediators. Several of these questions were answered by investigating alterations in the levels of the most studied endocannabinoids, anandamide (AEA) and 2-arachidonoylglycerol (2-AG), in tissues of animal models of disorders, and in bioptic samples and biological fluids (cerebrospinal fluid and blood) of human volunteers. Subsequently, the pharmacological effects of synthetic compounds that selectively target the cannabinoid CB(1) and CB(2) receptors, and endocannabinoid anabolic and catabolic enzymes, established cause-effect relationships between pathological alterations in endocannabinoid levels and the symptoms and progress of several disorders, including emesis, obesity, metabolic disorders, hepatic diseases, pain, inflammation and neurological and neuropsychiatric disorders. These new developments are discussed in this second review on the endocannabinoids, together with the results of pre-clinical and clinical studies on the potential therapeutic use of plant-derived cannabinoids and synthetic agents that manipulate pharmacologically the action at cannabinoid receptors or the tissue levels of AEA and 2-AG.”

http://www.ncbi.nlm.nih.gov/pubmed/19497779

The endocannabinoid system : a new target for the regulation of energy balance and metabolism.

Abstract

“Recent studies have provided evidence that the endocannabinoid (EC) system has very significant effects on energy balance and metabolism through the central control of appetite and by affecting peripheral metabolism. Endocannabinoids are endogenous phospholipid derivatives which bind and activate cannabinoid receptors type 1 and type 2 (CB1 and CB2 receptors). The CB1 receptor, a G-protein coupled receptor, is believed to be responsible for the majority of the central effects of endocannaboids on appetite. Chronic positive energy balance and obesity have been associated with an overactivation of the endocannaboid system which has been suggested to contribute to the development of abdominal obesity and to associated metabolic abnormalities which increase the risk of cardiovascular disease and type 2 diabetes. Animal studies had shown that stimulation of the cannabinoid CB1 receptor with endocannaboids such as anandamide could induce first an increase in food intake leading to body weight gain. Furthermore, an exciting development in this field has been the discovery of CB1 receptors in many peripheral tissues, including key organs involved in carbohydrate and lipid metabolism such as the adipose tissue and liver. Thus, blocking CB1 receptors located in the liver and adipose tissue could have an additional impact on the metabolic risk profile beyond what could be explained by the reduction in food intake and the related body weight loss. Preclinical studies have shown that rimonabant, the first CB1-receptor blocker to be available in clinical practice, could not only induce a reduction in food intake, but could also produce body weight loss beyond what could be explained by its effect on food intake. Thus, the evidence from preclinical studies have suggested that CB1 blockade could represent a relevant approach to reduce food intake, to induce body weight loss, and, most importantly, to “fix” the dysmetabolic state of viscerally obese patients at increased cardiometabolic risk.”

http://www.ncbi.nlm.nih.gov/pubmed/17667864

The endocannabinoid system, eating behavior and energy homeostasis: the end or a new beginning?

Abstract

“The endocannabinoid system (ECS) consists of two receptors (CB(1) and CB(2)), several endogenous ligands (primarily anandamide and 2-AG), and over a dozen ligand-metabolizing enzymes. The ECS regulates many aspects of embryological development and homeostasis, including neuroprotection and neural plasticity, immunity and inflammation, apoptosis and carcinogenesis, pain and emotional memory, and the focus of this review: hunger, feeding, and metabolism. This mini-review summarizes the main findings that supported the clinical use of CB1 antagonists/inverse agonists, the clinical concerns that have emerged, and the possible future of cannabinoid-based therapy of obesity and related diseases. The ECS controls energy balance and lipid metabolism centrally (in the hypothalamus and mesolimbic pathways) and peripherally (in adipocytes, liver, skeletal muscle and pancreatic islet cells), acting through numerous anorexigenic and orexigenic pathways. Obese people seem to display an increased endocannabinoid tone, driving CB(1) receptor in a feed-forward dysfunction. Several CB(1) antagonists/inverse agonists have been developed for the treatment of obesity. Although these drugs were found to be efficacious at reducing food intake as well as abdominal adiposity and cardiometabolic risk factors, they resulted in adverse psychiatric effects that limited their use and finally led to the end of the clinical use of systemic CB(1) ligands with significant inverse agonist activity for complicated obesity. However, the existence of alternatives such as CB(1) partial agonists, neutral antagonists, antagonists restricted to the periphery, allosteric modulators and other potential targets within the ECS indicate that a cannabinoid-based therapy for the management of obesity and its associated cardiometabolic sequelae should remain open for consideration.”

http://www.ncbi.nlm.nih.gov/pubmed/20347862

The Emerging Role of the Endocannabinoid System in Endocrine Regulation and Energy Balance

Abstract

“During the last few years, the endocannabinoid system has emerged as a highly relevant topic in the scientific community. Many different regulatory actions have been attributed to endocannabinoids, and their involvement in several pathophysiological conditions is under intense scrutiny. Cannabinoid receptors, named CB1 receptor and CB2 receptor, first discovered as the molecular targets of the psychotropic component of the plant Cannabis sativa, participate in the physiological modulation of many central and peripheral functions. CB2 receptor is mainly expressed in immune cells, whereas CB1 receptor is the most abundant G protein-coupled receptor expressed in the brain. CB1 receptor is expressed in the hypothalamus and the pituitary gland, and its activation is known to modulate all the endocrine hypothalamic-peripheral endocrine axes. An increasing amount of data highlights the role of the system in the stress response by influencing the hypothalamic-pituitary-adrenal axis and in the control of reproduction by modifying gonadotropin release, fertility, and sexual behavior. The ability of the endocannabinoid system to control appetite, food intake, and energy balance has recently received great attention, particularly in the light of the different modes of action underlying these functions. The endocannabinoid system modulates rewarding properties of food by acting at specific mesolimbic areas in the brain. In the hypothalamus, CB1 receptor and endocannabinoids are integrated components of the networks controlling appetite and food intake. Interestingly, the endocannabinoid system was recently shown to control metabolic functions by acting on peripheral tissues, such as adipocytes, hepatocytes, the gastrointestinal tract, and, possibly, skeletal muscle. The relevance of the system is further strenghtened by the notion that drugs interfering with the activity of the endocannabinoid system are considered as promising candidates for the treatment of various diseases, including obesity.”

I. Introduction

“THE FIRST STEPS in the discovery of the endocannabinoid system date back almost 4000 yr, when the therapeutic and psychotropic actions of the plant Cannabis sativa were first documented in India (1). Over the last 40 yr, after Gaoni and Mechoulam (2) purified the psychoactive component from hemp, a stunning amount of research has revealed the endocannabinoid system as a central modulatory system in animal physiology.

Elements of the endocannabinoid system comprise the cannabinoid receptors, the endogenous lipid ligands (endocannabinoids), and the machinery for their biosynthesis and metabolism (3, 4). Despite public concern related to the abuse of marijuana and its derivatives, the research on the endocannabinoid system has recently aroused enormous interest not only for the physiological functions, but also for the promising therapeutic potentials of drugs interfering with the activity of cannabinoid receptors. This review aims to provide an overview on the pivotal role of the endocannabinoid system in the modulation of the neuroendocrine and peripheral endocrine systems. Moreover, in the context of the recently proposed therapeutic applications of cannabinoid receptor antagonists in the treatment of obesity, the key role of the endocannabinoid system in the control of eating behavior, food intake, and energy metabolism will be discussed in the light of the recent data obtained from human and animal studies.”

http://edrv.endojournals.org/content/27/1/73.long

Expression of the cannabinoid system in muscle: effects of a high-fat diet and CB1 receptor blockade

Abstract

“The ECS (endocannabinoid system) plays an important role in the onset of obesity and metabolic disorders, implicating central and peripheral mechanisms predominantly via CB1 (cannabinoid type 1) receptors. CB1 receptor antagonist/inverse agonist treatment improves cardiometabolic risk factors and insulin resistance. However, the relative contribution of peripheral organs to the net beneficial metabolic effects remains unclear. In the present study, we have identified the presence of the endocannabinoid signalling machinery in skeletal muscle and also investigated the impact of an HFD (high-fat diet) on lipid-metabolism-related genes and endocannabinoid-related proteins. Finally, we tested whether administration of the CB1 inverse agonist AM251 restored the alterations induced by the HFD. Rats were fed on either an STD (standard/low-fat diet) or an HFD for 10 weeks and then treated with AM251 (3 mg/kg of body weight per day) for 14 days. The accumulated caloric intake was progressively higher in rats fed on the HFD than the STD, resulting in a divergence in body weight gain. AM251 treatment reduced accumulated food/caloric intake and body weight gain, being more marked in rats fed on the HFD. CB2 (cannabinoid type 2) receptor and PPARα (peroxisome-proliferator-activated receptor α) gene expression was decreased in HFD-fed rats, whereas MAGL (monoglyceride lipase) gene expression was up-regulated. These data suggest an altered endocannabinoid signalling as a result of the HFD. AM251 treatment reduced CB2 receptor, PPARγ and AdipoR1 (adiponectin receptor 1) gene expression in STD-fed rats, but only partially normalized the CB2 receptor in HFD-fed rats. Protein levels corroborated gene expression results, but also showed a decrease in DAGL (diacylglycerol) β and DAGLα after AM251 treatment in STD- and HFD-fed rats respectively. In conclusion, the results of the present study indicate a diet-sensitive ECS in skeletal muscle, suggesting that blockade of C1 receptors could work towards restoration of the metabolic adaption imposed by diet.”

“In the present study, we focused on skeletal muscles, which are an important tissue for glucose and fat oxidation, being an important site for insulin action [27]. However, despite the fact that AEA can modify the pathways regulating fatty acid oxidation in the skeletal muscle, probably via CB1 receptors, suggesting that CB1 receptor antagonism would have an important role in oxidative metabolism and energy regulation [28,29], there is still a general lack of clarity regarding the physiological functions and molecular mechanism implicated. In fact, there are almost no studies demonstrating the presence of endocannabinoid signalling proteins and their sensitivity to HFDs (high-fat diets). Therefore, in the present study, we have (i) investigated the presence of the endocannabinoid signalling machinery in skeletal muscle, (ii) analysed the impact of an HFD on lipid and glucose metabolism and endocannabinoid-related genes, and (iii) monitored the effects of the CB1 receptor inverse agonist AM251 during an STD (standard/low-fat diet) and HFD on the endocannabinoid machinery and the genes related to lipid oxidative metabolism in skeletal muscle of rats. Among the many molecules involved in lipid metabolism of skeletal muscle, we evaluated changes in the gene and protein expression of relevant components of the ECS, such as the CB1 and CB2 receptors and some of the enzymes responsible for their synthesis.

The presence of the ECS in skeletal muscle

As a final note, the regulatory mechanisms may be different at rest and during exercise, may change as the exercise intensity increases, and this could be influential in endocannabinoid production [31,49]. It would be interesting to repeat this type of experiment combining exercise and diet in its original design. Regulation of skeletal muscle fat and glucose metabolism is clearly multifactorial, and different mechanisms may dominate in different conditions; besides, potential variations may exist between individuals in response to stimulating or blocking CB1 receptors. This could cause differences in response to treatment with CB1 receptor antagonists between different obese states. In conclusion, we have provided findings identifying important relevant players involved in the signalling pathways of CB1 receptor antagonism in skeletal muscle and determined the extent of changes in this system associated with either an HFD or CB1 receptor blockade.”

http://www.biochemj.org/bj/433/0175/bj4330175.htm

Inverse agonism and neutral antagonism at cannabinoid CB1 receptors.

Abstract

“There are at least two types of cannabinoid receptor, CB1 and CB2, both G protein coupled. CB1 receptors are expressed predominantly at nerve terminals and mediate inhibition of transmitter release whereas CB2 receptors are found mainly on immune cells, one of their roles being to modulate cytokine release. Endogenous cannabinoid receptor agonists also exist and these “endocannabinoids” together with their receptors constitute the “endocannabinoid system”. These discoveries were followed by the development of a number of CB1- and CB2-selective antagonists that in some CB1 or CB2 receptor-containing systems also produce “inverse cannabimimetic effects”, effects opposite in direction from those produced by cannabinoid receptor agonists. This review focuses on the CB1-selective antagonists, SR141716A, AM251, AM281 and LY320135, and discusses possible mechanisms by which these ligands produce their inverse effects: (1) competitive surmountable antagonism at CB1 receptors of endogenously released endocannabinoids, (2) inverse agonism resulting from negative, possibly allosteric, modulation of the constitutive activity of CB1 receptors in which CB1 receptors are shifted from a constitutively active “on” state to one or more constitutively inactive “off” states and (3) CB1 receptor-independent mechanisms, for example antagonism of endogenously released adenosine at A1 receptors. Recently developed neutral competitive CB1 receptor antagonists, which are expected to produce inverse effects through antagonism of endogenously released endocannabinoids but not by modulating CB1 receptor constitutive activity, are also discussed. So too are possible clinical consequences of the production of inverse cannabimimetic effects, there being convincing evidence that released endocannabinoids can have “autoprotective” roles.”

http://www.ncbi.nlm.nih.gov/pubmed/15670612

The endocannabinoid system and the treatment of obesity.

Abstract

“The endocannabinoids are endogenous lipids capable of binding to both cannabinoid receptors (CB) CB1 and CB2. These receptors belong to the G protein-coupled family receptors and they were discovered while investigating the mode of action of ?(9)-tetrahydrocannabinol, a component of Cannabis sativa, to which they bind with high affinity. Among many other brain sites, CB1 is present in the hypothalamic nuclei involved in the control of energy balance and body weight, as well as in neurons of the mesolimbic system which is believed to mediate the incentive value of food. At central nervous system level, CB1 activation is necessary to induce food intake after a short period of food deprivation, and when CB1 is activated by endocannabinoids produced in situ, a stimulation of the ingestion of palatable food has been described. CB1 stimulation leads to modulation of the release of some hypothalamic anorexigenic and orexigenic mediators, as well as of dopamine in the nucleus accumbens shell. Recent evidence has proved that CB1 is also present in the peripheral organs, such as the adipose tissue and gastrointestinal system, key organs in the regulation of energy metabolism. Animal models have provided solid evidence that genetically induced obesity leads to long-lasting overstimulation of endocannabinoid system synthesis resulting in permanent overactivation of CB1, which may then contribute to the maintenance of this disease. Importantly, at peripheral level, CB1 activation has been shown to stimulate lipogenesis in adipocytes. CB1 blockers increase adiponectin production in adipocytes, which leads to increased fatty acid oxidation and free fatty acid clearance. Moreover, CB1 has been shown to be up-regulated in adipocytes derived from obese rodents. These results support the role of endocannabinoids in the development and maintenance of obesity, paving the way for the development of a new class of drugs such as the CB1 blockers as a therapy for tackling obesity and the associated major cardiovascular risk factors.”

http://www.ncbi.nlm.nih.gov/pubmed/16019725

The endocannabinoid system: a new target for the regulation of energy balance and metabolism.

Abstract

“Recent studies have provided evidence that the endocannabinoid (EC) system has very significant effects on energy balance and metabolism through the central control of appetite and by affecting peripheral metabolism. Endocannabinoids are endogenous phospholipid derivatives which bind and activate cannabinoid receptors type 1 and type 2 (CB1 and CB2 receptors). The CB1 receptor, a G-protein coupled receptor, is believed to be responsible for the majority of the central effects of endocannaboids on appetite. Chronic positive energy balance and obesity have been associated with an overactivation of the endocannaboid system which has been suggested to contribute to the development of abdominal obesity and to associated metabolic abnormalities which increase the risk of cardiovascular disease and type 2 diabetes. Animal studies had shown that stimulation of the cannabinoid CB1 receptor with endocannaboids such as anandamide could induce first an increase in food intake leading to body weight gain. Furthermore, an exciting development in this field has been the discovery of CB1 receptors in many peripheral tissues, including key organs involved in carbohydrate and lipid metabolism such as the adipose tissue and liver. Thus, blocking CB1 receptors located in the liver and adipose tissue could have an additional impact on the metabolic risk profile beyond what could be explained by the reduction in food intake and the related body weight loss. Preclinical studies have shown that rimonabant, the first CB1-receptor blocker to be available in clinical practice, could not only induce a reduction in food intake, but could also produce body weight loss beyond what could be explained by its effect on food intake. Thus, the evidence from preclinical studies have suggested that CB1 blockade could represent a relevant approach to reduce food intake, to induce body weight loss, and, most importantly, to “fix” the dysmetabolic state of viscerally obese patients at increased cardiometabolic risk.”

http://www.ncbi.nlm.nih.gov/pubmed/17667864

Activation of the peripheral endocannabinoid system in human obesity.

Abstract

“Obesity is the main risk factor for the development of type 2 diabetes. Activation of the central endocannabinoid system increases food intake and promotes weight gain. Blockade of the cannabinoid type 1 (CB-1) receptor reduces body weight in animals by central and peripheral actions; the role of the peripheral endocannabinoid system in human obesity is now being extensively investigated. We measured circulating endocannabinoid concentrations and studied the expression of CB-1 and the main degrading enzyme, fatty acid amide hydrolase (FAAH), in adipose tissue of lean (n = 20) and obese (n = 20) women and after a 5% weight loss in a second group of women (n = 17). Circulating levels of anandamide and 1/2-arachidonoylglycerol were increased by 35 and 52% in obese compared with lean women (P < 0.05). Adipose tissue mRNA levels were reduced by -34% for CB-1 and -59% for FAAH in obese subjects (P < 0.05). A strong negative correlation was found between FAAH expression in adipose tissue and circulating endocannabinoids. Circulating endocannabinoids and CB-1 or FAAH expression were not affected by 5% weight loss. The expression of CB-1 and FAAH was increased in mature human adipocytes compared with in preadipocytes and was found in several human tissues. Our findings support the presence of a peripheral endocannabinoid system that is upregulated in human obesity.”

“We demonstrated that the CB-1 receptor is expressed in organs relevant to the pathogenesis of obesity in humans, so that results from mechanistic studies in animals may also be applicable to patients. Furthermore, the peripheral endocannabinoid system is activated in human obesity. The observation that endocannabinoid activation is not reversible with a 5% weight loss may suggest that this activation is a cause rather than a consequence of obesity. The physiology and pathophysiology of the peripheral adipose tissue endocannabinoid system warrant further studies.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2228268/