Determination of cannabinoids in hemp nuts products in Taiwan by HPLC-MS/MS coupled with chemometric analysis: Quality evaluation and a pilot human study.

Image result for drug testing and analysis

“Hemp nuts are mature cannabis seeds obtained after hulling and stir-frying that are commonly used in traditional Chinese medicine for treating functional constipation. In this work, we screened hemp nut products, classified them, and verified the legality of consuming them.

A total of 18 products were purchased from Taiwan, China and Canada. Validated high-performance liquid chromatography with tandem mass spectrometry methods were developed for analyzing the cannabinoid (i.e., Δ9 -tetrahydrocannabinol (THC), cannabidiol (CBD), and cannabinol) content of the products and the concentration of urinary 11-nor-9-carboxy-THC.

Chemometric techniques, namely hierarchical clustering analysis (HCA) and principal component analysis (PCA), were applied for rapidly classifying 11 concentrated powder products in Taiwan. A pilot human study comprising single and multiple administrations of a product with 1.5 µg/g of THC was conducted to examine the urinary 11-nor-9-carboxy-THC concentration. Through optimization of 32 full factorial design, using 60% isopropanol as the extraction solvent exhibited the highest yield ofcannabinoids and was applied as the optimal condition in further analysis.

The results of HCA and PCA on quality evaluation were in well agreement; however, the tested products possessed distinct CBD-to-THC ratios which ranged widely from 0.1:1 to 46.8:1. Particularly, the products with CBD-to-THC ratios higher than 1:1 were the majority in Taiwan.

Our data suggested that all the tested hemp nut products met the Taiwan restriction criteria of 10 µg/g of THC. We propose a usual consumption amount of hemp nut products in Taiwan would unlikely to violate the cut-off point of 15 ng/mL of urinary 11-nor-9-carboxy-THC.”

http://www.ncbi.nlm.nih.gov/pubmed/27590030

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Acute and chronic effects of cannabinoids on effort-related decision-making and reward learning: an evaluation of the cannabis ‘amotivational’ hypotheses

Psychopharmacology

“Cannabis acutely induced a transient amotivational state and CBD influenced the effects of THC on expected value. This is the first well powered, fully controlled study to objectively demonstrate the acute amotivational effects of THC.”  http://link.springer.com/article/10.1007/s00213-016-4383-x

“Cannabis reduces short-term motivation to work for money”  https://www.sciencedaily.com/releases/2016/09/160901211303.htm

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

From cannabis to cannabidiol to treat epilepsy, where are we?

Image result for Curr Pharm Des.

“Several antiepileptic drugs (AEDs), about 25, are currently clinically available for the treatment of patients with epilepsy. Despite this armamentarium and the many recently introduced AEDs, no major advances have been achieved considering the number of drug resistant patients, while many benefits have been indeed obtained for other clinical outcomes (e.g. better tolerability, less interactions).

Cannabinoids have long been studied for their potential therapeutical use and more recently phytocannabinoids have been considered a valuable tool for the treatment of several neurological disorders including epilepsy.

Among this wide class, the most studied is cannabidiol (CBD) considering its lack of psychotropic effects and its anticonvulsant properties.

Several preclinical studies have tried to understand the mechanism of action of CBD, which still remains largely not understood.

CBD has shown significant anticonvulsant effects mainly in acute animal models of seizures; beneficial effects were reported also in animal models of epileptogenesis and chronic models of epilepsy,

There is indeed sufficient supporting data for clinical development and important antiepileptic effects and the currently ongoing clinical studies will permit the real usefulness of CBD and possibly other cannabinoids.

Undoubtedly, several issues also need to be addressed in the next future (e.g. better pharmacokinetic profiling). Finally, shading light on the mechanism of action and the study of other cannabinoids might represent an advantage for future developments.”

http://www.ncbi.nlm.nih.gov/pubmed/27587196

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Efficacy and Safety of Cannabidiol and Tetrahydrocannabivarin on Glycemic and Lipid Parameters in Patients With Type 2 Diabetes: A Randomized, Double-Blind, Placebo-Controlled, Parallel Group Pilot Study.

Image result for Diabetes Care

“Cannabidiol (CBD) and Δ9-tetrahydrocannabivarin (THCV) are nonpsychoactive phytocannabinoids affecting lipid and glucose metabolism in animal models. This study set out to examine the effects of these compounds in patients with type 2 diabetes.

RESULTS:

Compared with placebo, THCV significantly decreased fasting plasma glucose (estimated treatment difference [ETD] = -1.2 mmol/L; P < 0.05) and improved pancreatic β-cell function (HOMA2 β-cell function [ETD = -44.51 points; P < 0.01]), adiponectin (ETD = -5.9 × 106 pg/mL; P < 0.01), and apolipoprotein A (ETD = -6.02 μmol/L; P < 0.05), although plasma HDL was unaffected. Compared with baseline (but not placebo), CBD decreased resistin (-898 pg/ml; P < 0.05) and increased glucose-dependent insulinotropic peptide (21.9 pg/ml; P < 0.05). None of the combination treatments had a significant impact on end points. CBD and THCV were well tolerated.

CONCLUSIONS:

THCV could represent a new therapeutic agent in glycemic control in subjects with type 2 diabetes.”

http://www.ncbi.nlm.nih.gov/pubmed/27573936

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Delineating the Efficacy of a Cannabis-Based Medicine at Advanced Stages of Dementia in a Murine Model.

 

Image result for J Alzheimers Dis.

“Previous reports have demonstrated that the combination of Δ9-tetrahydrocannabinol (Δ9-THC) and cannabidiol (CBD) botanical extracts, which are the components of an already approved cannabis-based medicine, reduce the Alzheimer-like phenotype of AβPP/PS1 transgenic mice when chronically administered during the early symptomatic stage.

Here, we provide evidence that such natural cannabinoids are still effective in reducing memory impairment in AβPP/PS1 mice at advanced stages of the disease but are not effective in modifying the Aβ processing or in reducing the glial reactivity associated with aberrant Aβ deposition as occurs when administered at early stages of the disease.

The present study also demonstrates that natural cannabinoids do not affect cognitive impairment associated with healthy aging in wild-type mice.

The positive effects induced by Δ9-THC and CBD in aged AβPP/PS1 mice are associated with reduced GluR2/3 and increased levels of GABA-A Ra1 in cannabinoid-treated animals when compared with animals treated with vehicle alone.”

http://www.ncbi.nlm.nih.gov/pubmed/27567873

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Severe motor and vocal tics controlled with Sativex®.

Image result for Australas Psychiatry

“A single case report on cannabinoid treatment for treatment-resistant Tourette syndrome (TS).

METHOD:

Our subject received 10.8 mg Tetrahydocannabinol and 10 mg cannabidiol daily, in the form of two oro-mucosal sprays of ‘Sativex®‘, twice daily. Assessment was pre-treatment and at week one, two, and four during treatment. He completed the Yale Global Tic Severity Scale as a subjective measure, and was videoed at each stage. The videos were objectively rated by two assessors, blind to the stage of treatment, using the Original Rush Videotape Rating Scale.

RESULTS:

Both subjective and objective measures demonstrated marked improvement in the frequency and severity of motor and vocal tics post-treatment. There was good interrater reliability of results.

CONCLUSIONS:

Our results support previous research suggesting that cannabinoids are a safe and effective treatment for TS and should be considered in treatment-resistant cases.

Further studies are needed to substantiate our findings.”

http://www.ncbi.nlm.nih.gov/pubmed/27558217

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Medical Marijuana-Opportunities and Challenges

“Over the recent years, public and political opinions have demonstrated increasing support for the legalization of medical marijuana.

To date, 24 states as well as the District of Columbia have legalized cannabis for medical use, 4 states have legalized the recreational use of Marijuana.

Marijuana is derived from the hemp plant Cannabis sativa. Δ-9-tetrahydrocannabinol (THC) is the major psychoactive constituent of cannabis, while cannabidiol (CBD) is the major non-psychoactive constituent. THC is a partial agonist at CB1 and CB2 receptors, while CBD at high levels is an antagonist CB1 and CB2.

CB1 is abundantly expressed in the brain, and CB2 is expressed on immune cells (expression of CB2 on neurons remains controversial). The brain also produces endogenous cannabis-like substances (endocannabinoids) that bind and activate the CB1/CB2 receptors.

There is tremendous interest in harnessing the therapeutic potential of plant-derived and synthetic cannabinoids.

This Editorial provides an overview of diseases that may be treated by cannabinoids.”

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4948749/

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

A new antipsychotic mechanism of action for cannabidiol

Totally dope! – A new antipsychotic mechanism of action for cannabidiol, by Anand Gururajan

“The pharmacological strategy for the treatment of schizophrenia has not changed in the six decades since chlorpromazine was introduced in 1952. Although several newer agents have recently gained approval, the mechanism of action of antipsychotics is still largely based on normalising dopaminergic neurotransmission which does not adequately address the symptomatology of a very complex disorder. Moreover, they cause side effects such as extrapyramidal motor symptoms and metabolic syndrome which can worsen the patient condition.

In this regard, preclinical and clinical studies since the ’90s have demonstrated the antipsychotic potential of cannabidiol (CBD), a derivative of the cannabis sativa plant which does not have the adverse psychoactive properties of tetrahydrocannabinol.

In particular, CBD has been shown to be effective in attenuating the positive symptoms of schizophrenia with a negligible side-effect profile.

Accumulating evidence implicates dysfunction of the mammalian target of rapamycin (mTOR) signaling cascade in the pathophysiology of schizophrenia. Thus, in a recent paper, Renard et al. (2016) used the amphetamine (AMPH)-sensitisation protocol in rats to investigate whether the antipsychotic effects of CBD were mediated by its effects on the mTOR cascade. Specifically, they focused on the nucleus accumbens shell (NASh) which has been implicated as a therapeutically relevant ‘hot-spot’ for antipsychotic action and is one of the brain regions targeted by CBD.

Thus, together with the fact that CBD alone had no behavioural effects, the behavioural findings reinforce the potential utility of this cannabinoid as an antipsychotic for the treatment of the positive symptoms of schizophrenia.”

http://medicalxpress.com/news/2016-08-antipsychotic-mechanism-action-cannabidiol.html

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Plasma and brain pharmacokinetic profile of cannabidiol (CBD), cannabidivarine (CBDV), Δ⁹-tetrahydrocannabivarin (THCV) and cannabigerol (CBG) in rats and mice following oral and intraperitoneal administration and CBD action on obsessive-compulsive behaviour.

 

Psychopharmacology

“Phytocannabinoids are useful therapeutics for multiple applications including treatments of constipation, malaria, rheumatism, alleviation of intraocular pressure, emesis, anxiety and some neurological and neurodegenerative disorders.

Consistent with these medicinal properties, extracted cannabinoids have recently gained much interest in research, and some are currently in advanced stages of clinical testing.

Other constituents of Cannabis sativa, the hemp plant, however, remain relatively unexplored in vivo. These include cannabidiol (CBD), cannabidivarine (CBDV), Δ(9)-tetrahydrocannabivarin (Δ(9)-THCV) and cannabigerol (CBG).

RESULTS:

All phytocannabinoids readily penetrated the blood-brain barrier and solutol, despite producing moderate behavioural anomalies, led to higher brain penetration than cremophor after oral, but not intraperitoneal exposure. In mice, cremophor-based intraperitoneal administration always attained higher plasma and brain concentrations, independent of substance given. In rats, oral administration offered higher brain concentrations for CBD (120 mg/kg) and CBDV (60 mg/kg), but not for Δ(9)-THCV (30 mg/kg) and CBG (120 mg/kg), for which the intraperitoneal route was more effective. CBD inhibited obsessive-compulsive behaviour in a time-dependent manner matching its pharmacokinetic profile.

CONCLUSIONS:

These data provide important information on the brain and plasma exposure of new phytocannabinoids and guidance for the most efficacious administration route and time points for determination of drug effects under in vivo conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/21796370

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

The therapeutic potential of the phytocannabinoid cannabidiol for Alzheimer’s disease.

“Alzheimer’s disease (AD) is the most common neurodegenerative disorder, characterized by progressive loss of cognition. Over 35 million individuals currently have AD worldwide. Unfortunately, current therapies are limited to very modest symptomatic relief.

The brains of AD patients are characterized by the deposition of amyloid-β and hyperphosphorylated forms of tau protein. AD brains also show neurodegeneration and high levels of oxidative stress and inflammation.

The phytocannabinoid cannabidiol (CBD) possesses neuroprotective, antioxidant and anti-inflammatory properties and reduces amyloid-β production and tau hyperphosphorylation in vitro.

CBD has also been shown to be effective in vivo making the phytocannabinoid an interesting candidate for novel therapeutic interventions in AD, especially as it lacks psychoactive or cognition-impairing properties.

CBD treatment would be in line with preventative, multimodal drug strategies targeting a combination of pathological symptoms, which might be ideal for AD therapy.

Thus, this review will present a brief introduction to AD biology and current treatment options before outlining comprehensively CBD biology and pharmacology, followed by in-vitro and in-vivo evidence for the therapeutic potential of CBD. We will also discuss the role of the endocannabinioid system in AD before commenting on the potential future of CBD for AD therapy (including safety aspects).”

http://www.ncbi.nlm.nih.gov/pubmed/27471947

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous