Regulation of adenylate cyclase by cannabinoid drugs. Insights based on thermodynamic studies.

“The abilities of lipophilic cannabinoid drugs to regulate adenylate cyclase activity in neuroblastoma cell membranes were analyzed by thermodynamic studies…

These data suggest that, for the entropy-driven hormone-stimulated adenylate cyclase enzyme, less disorder of the system occurs in the presence of regulators that inhibit the enzyme via Gi.

In summary, thermodynamic data suggest that cannabidiol can influence adenylate cyclase by increasing membrane fluidity, but that the inhibition of adenylate cyclase by delta 9-tetrahydrocannabinol is not related to membrane fluidization.”

http://www.ncbi.nlm.nih.gov/pubmed/2554920

“Regulation of adenylate cyclase in a cultured neuronal cell line by marijuana constituents, metabolites of delta-9-tetrahydrocannabinol, and synthetic analogs having psychoactivity.” http://www.ncbi.nlm.nih.gov/pubmed/2830535

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology.

“Cannabinoids, consisting of alkylresorcinol and monoterpene groups, are the unique secondary metabolites that are found only in Cannabis sativa. Tetrahydrocannabinol (THC), cannabidiol (CBD) and cannabichromene (CBC) are well known cannabinoids and their pharmacological properties have been extensively studied. Recently, biosynthetic pathways of these cannabinoids have been successfully established. Several biosynthetic enzymes including geranylpyrophosphate:olivetolate geranyltransferase, tetrahydrocannabinolic acid (THCA) synthase, cannabidiolic acid (CBDA) synthase and cannabichromenic acid (CBCA) synthase have been purified from young rapidly expanding leaves of C. sativa. In addition, molecular cloning, characterization and localization of THCA synthase have been recently reported. THCA and cannabigerolic acid (CBGA), its substrate, were shown to be apoptosis-inducing agents that might play a role in plant defense. Transgenic tobacco hairy roots expressing THCA synthase can produce THCA upon feeding of CBGA. These results open the way for biotechnological production of cannabinoids in the future.”

http://www.ncbi.nlm.nih.gov/pubmed/17691992

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Cannabinoid actions at TRPV channels: effects on TRPV3 and TRPV4 and their potential relevance to gastrointestinal inflammation.

“Plant cannabinoids, like Δ(9)-tetrahydrocannabinol (THC) and cannabidiol (CBD), activate/desensitize thermosensitive transient receptor potential (TRP) channels of vanilloid type-1 or -2 (TRPV1 or TRPV2). We investigated whether cannabinoids also activate/desensitize two other ‘thermo-TRP’s', the TRP channels of vanilloid type-3 or -4 (TRPV3 or TRPV4), and if the TRPV-inactive cannabichromene (CBC) modifies the expression of TRPV1-4 channels in the gastrointestinal tract…

CONCLUSIONS:

Cannabinoids can affect both the activity and the expression of TRPV1-4 channels, with various potential therapeutic applications, including in the gastrointestinal tract.”

http://www.ncbi.nlm.nih.gov/pubmed/21726418

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Non-psychoactive cannabinoids modulate the descending pathway of antinociception in anaesthetized rats through several mechanisms of action.

“Two non-psychoactive cannabinoids, cannabidiol (CBD) and cannabichromene (CBC), are known to modulate in vitro the activity of proteins involved in nociceptive mechanisms, including transient receptor potential (TRP) channels of vanilloid type-1 (TRPV1) and of ankyrin type-1 (TRPA1), the equilibrative nucleoside transporter and proteins facilitating endocannabinoid inactivation. Here we have tested these two cannabinoids on the activity of the descending pathway of antinociception…

CONCLUSIONS AND IMPLICATIONS:

CBD and CBC stimulated descending pathways of antinociception and caused analgesia by interacting with several target proteins involved in nociceptive control.

These compounds might represent useful therapeutic agents with multiple mechanisms of action.”

http://www.ncbi.nlm.nih.gov/pubmed/20942863

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Potential protective effects of cannabidiol on neuroanatomical alterations in cannabis users and psychosis: a critical review.

“…different cannabis compounds may exert opposite effects on the neuroanatomical changes underlying psychosis. In particular, cannabidiol (CBD) was shown to prevent THC associated hippocampal volume loss… This finding is further supported by several animal experiments supporting neuroprotective properties of CBD mainly via anti-oxidative effects, CB2 receptors or adenosine receptors… mechanisms by which CBD may reduce brain volume loss, including antagonism of THC, interactions with endocannabinoids, and mechanisms that specifically underlie antipsychotic properties of CBD.”

http://www.ncbi.nlm.nih.gov/pubmed/22716143

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

(+)-Cannabidiol analogues which bind cannabinoid receptors but exert peripheral activity only.

“We have tested a series of (+)-cannabidiol derivatives… for central and peripheral (intestinal, antiinflammatory and peripheral pain) effects in mice…

We conclude that centrally inactive (+)-cannabidiol analogues should be further developed as antidiarrheal, antiinflammatory and analgesic drugs for gastrointestinal and other peripheral conditions.”

http://www.ncbi.nlm.nih.gov/pubmed/15588739

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Peripheral, but not central effects of cannabidiol derivatives: mediation by CB(1) and unidentified receptors.

“Delta-9 tetrahydrocannabinol (Delta(9)-THC) and (-)-cannabidiol ((-)-CBD) are major constituents of the Cannabis sativa plant with different pharmacological profiles…

We tested a series of (+)- and (-)-CBD derivatives for central and peripheral effects in mice…

We suggest that (+)-CBD analogues have mixed agonist/antagonist activity in the brain.

Second, (-)-CBD analogues which are devoid of cannabinoid receptor affinity but which inhibit intestinal motility, suggest the existence of a non-CB(1), non-CB(2) receptor.

Therefore, such analogues should be further developed as antidiarrheal and/or antiinflammatory drugs.

We propose to study the therapeutic potential of (-)- and (+)-CBD derivatives for complex conditions such as inflammatory bowel disease and cystic fibrosis.”

http://www.ncbi.nlm.nih.gov/pubmed/15910887

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Protective Effects of Cannabidiol Against Hippocampal Cell Death and Cognitive Impairment Induced by Bilateral Common Carotid Artery Occlusion in Mice.

“The present study investigated whether cannabidiol (CBD), a major non-psychoactive constituent of marijuana, protects against hippocampal neurodegeneration and cognitive deficits induced by brain ischemia in adult mice…

These findings suggest a protective effect of CBD on neuronal death induced by ischemia and indicate that CBD might exert beneficial therapeutic effects in brain ischemia. The mechanisms that underlie the neuroprotective effects of CBD in BCCAO mice might involve the inhibition of reactive astrogliosis.”

http://www.ncbi.nlm.nih.gov/pubmed/24532152

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Nabiximols (THC/CBD Oromucosal Spray, Sativex®) in Clinical Practice – Results of a Multicenter, Non-Interventional Study (MOVE 2) in Patients with Multiple Sclerosis Spasticity.

“Nabiximols (Sativex®), a cannabinoid-based oromucosal spray, is an add-on therapy for patients with moderate to severe multiple sclerosis spasticity (MSS) resistant to other medications. The primary objective was to provide real-life observational data of clinical experience of nabiximols in contrast to formal clinical trials of effectiveness…

Conclusion: Real-life data confirm nabiximols as an effective and well-tolerated treatment option for resistant MSS in clinical practice.”

http://www.ncbi.nlm.nih.gov/pubmed/24525548

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous

Anticoagulant effects of a Cannabis extract in an obese rat model.

“Blood coagulation studies were conducted to determine the possible anti-/prothrombotic effect of an organic cannabis extract and the three major cannabinoids, THC, CBD and CBN…

The study thus shows that Cannabis sativa and the cannabinoids, THC and CBN, display anticoagulant activity and may be useful in the treatment of diseases such as type 2 diabetes in which a hypercoagulable state exists.”

 http://www.ncbi.nlm.nih.gov/pubmed/16644197

Facebook Twitter Pinterest Stumbleupon Tumblr Posterous