Immunoactive cannabinoids: Therapeutic prospects for marijuana constituents

“Marijuana, the common name for Cannabis sativa, is a widely distributed hemp plant whose dried flowering tops and leaves have been used for medicinal purposes for 12,000 years by some estimates.

The article by Malfaitet al. in this issue of PNAS is relevant to the question of whether such traditional uses of marijuana could be clinically justifiable today.

It is conceivable that marijuana contains a series of cannabinoids that, in the aggregate, could alleviate arthritis as implied in the present report, yet remain well tolerated.

Remarkably, the claim that marijuana does so also was made 4,000 years ago by the Chinese emperor Shen-nung whose pharmacobotanical compendium, the Pen-ts’ao Ching, concluded that cannabis “undoes rheumatism””

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC34030/

Delayed treatment with cannabidiol has a cerebroprotective action via a cannabinoid receptor-independent myeloperoxidase-inhibiting mechanism.

“We examined the neuroprotective mechanism of cannabidiol, non-psychoactive component of marijuana, on the infarction in a 4 h mouse middle cerebral artery (MCA) occlusion model in comparison with Delta(9)-tetrahydrocannabinol (Delta(9)-THC).

Both pre- and post-ischemic treatment with cannabidiol resulted in potent and long-lasting neuroprotection, whereas only pre-ischemic treatment with Delta(9)-THC reduced the infarction.

Unlike Delta(9)-THC, cannabidiol did not affect the excess release of glutamate in the cortex after occlusion.

Cannabidiol suppressed the decrease in cerebral blood flow by the failure of cerebral microcirculation after reperfusion and inhibited MPO activity in neutrophils.

Furthermore, the number of MPO-immunopositive cells was reduced in the ipsilateral hemisphere in cannabidiol-treated group.

Cannabidiol provides potent and long-lasting neuroprotection through an anti-inflammatory CB(1) receptor-independent mechanism, suggesting that cannabidiol will have a palliative action and open new therapeutic possibilities for treating cerebrovascular disorders.”

http://www.ncbi.nlm.nih.gov/pubmed/17437545

Cannabidiol prevents a post-ischemic injury progressively induced by cerebral ischemia via a high-mobility group box1-inhibiting mechanism.

“We examined the cerebroprotective mechanism of cannabidiol, the non-psychoactive component of marijuana, against infarction in a 4-h mouse middle cerebral artery (MCA) occlusion model.

Cannabidiol was intraperitoneally administrated immediately before and 3h after cerebral ischemia.

Cannabidiol significantly prevented infarction and MPO activity at 20h after reperfusion.

Cannabidiol inhibited the MPO-positive cells expressing HMGB1 and also decreased the expression level of HMGB1 in plasma.

In addition, cannabidiol decreased the number of Iba1- and GFAP-positive cells at 3 days after cerebral ischemia.

Moreover, cannabidiol improved neurological score and motor coordination on the rota-rod test.

Our results suggest that cannabidiol inhibits monocyte/macropharge expressing HMGB1 followed by preventing glial activation and neurological impairment induced by cerebral ischemia.

Cannabidiol will open new therapeutic possibilities for post-ischemic injury via HMGB1-inhibiting mechanism.”

http://www.ncbi.nlm.nih.gov/pubmed/18634812

The cannabinoids: therapeutic potentials.

 

“A review of the therapeutic potentials of the cannabinoids is presented. With respect to the antifertility aspects of cannabinoids, 2 mg delta 9-THC suppressed luteinizing hormone secretion in rats and 2 and 3 mg/kg resulted in a deterioation of male sexual performance. A new chapter in marijuana research was opened in 1964 with the identification of delta 9-tetrahydrocannabinol as the active ingredient. Antiedema, analgesic, antipyretic, antiinflammatory, antifertility, antiepileptic, anticonvulsant, antihypertensive, cardiotonic, pulmonary, and antidepressant effects along with potentiation of barbiturates and analgesics are reviewed leading one to the conclusion that marijuana is “a drug for all reasons”. During the past decade many investigators have pursued the possibility of modification of the delta 9 structure to delineate activities. 1 compound, Abbott 40656, SP106, a water-soluble benzopyran derivative is presently under Phase 1 clinical evaluation as a sedative-hypnotic.”

http://www.ncbi.nlm.nih.gov/pubmed/12307093/

Study: Non-Psychoactive Cannabis Could Treat OCD

Leaf Science

“A non-psychoactive chemical in marijuana may be able to control symptoms of obsessive-compulsive disorder, according to new research out of Brazil.

Cannabidiol (CBD) is one of the major compounds found in marijuana, but lacks the high caused by THC.

Previous studies suggest that it can be used to combat anxiety and other obsessive-compulsive behaviors.

While research has mostly involved simple animal models, a team led by Dr. Francisco Guimarães of the University of Sao Paulo’s School of Medicine decided to test cannabidiol in rats that were given mCPP – a drug that blocks the effects of traditional OCD treatments.

Interestingly, even at low doses, CBD was able to reverse the obsessive-compulsive behavior caused by mCPP. Published in the journal Fundamental & Clinical Pharmacology, the authors conclude that the study adds support to “a possible anti-compulsive effect of CBD.””

http://www.leafscience.com/2013/10/22/study-non-psychoactive-cannabis-treat-ocd/

“Cannabidiol reverses the mCPP-induced increase in marble-burying behavior.”  http://www.ncbi.nlm.nih.gov/pubmed/24118015

Cannabinoid Receptor Found to Help Suppress Habitual Behavior

“A mouse study finds that CB1 protein in orbitofrontal cortex neurons mediates the ability to switch between habitual and active-learning behaviors when needed.

Everyone carries out daily habits and routines. As David Lovinger, Ph.D., chief of the Laboratory for Integrative Neuroscience at the National Institute on Alcohol Abuse and Alcoholism (NIAAA), explained, “If your brain does not habitualize familiar tasks or places, it would be very difficult to focus because you’re constantly processing all these sensory inputs.”

Nonetheless, it’s important that the brain can shift from habit mode to a more active, goal-directed mindset. While an occasional lapse is normal, a chronic inability to exit from habitual behavior is a critical element of both addiction and obsessive-compulsive disorders. A new study carried out by Lovinger and colleagues adds to the understanding of the brain circuits responsible for the habitual/goal-directed shift.

The results, published June 15 in Neuron, also point to a receptor called cannabinoid type 1 (CB1) as a key regulator of this circuitry.

The findings were made possible using a training strategy that enabled mice to push levers for food in both a habitual and goal-directed manner. The mice were placed in enclosures with differing visual decorations; the lever in the first dropped a food reward after it was pressed a certain number of times, while the lever in the second would drop a reward at a random time after the lever had been pressed once.

“In the first scenario, the mouse makes the connection quickly that pressing the lever 20 times, for example, gets it a reward,” Lovinger told Psychiatric News. “In the second enclosure, that contiguity is disrupted. The mouse knows that pressing will eventually lead to reward, but it doesn’t know how many, so it will just start pressing at a periodic rate.”

On alternate testing days, the mice were allowed to eat their treats prior to the testing, and on these days—termed the devalued state because the desire for the reward is lessened—mice pressed the lever far less in the goal-directed enclosure, but still roughly the same amount in the random-time enclosure—much like a habit.

The researchers then tried these tests out on mice in which the neurons that travel between the orbitofrontal cortex (OFC) and dorsal striatum (DS, which links decision making and reward behaviors) were blocked and observed that the mice kept pressing a lot in both enclosures, suggesting an inability to switch out of habit mode.

“Normally, on devalued days the urge to default to the habit of pressing the lever repeatedly gets suppressed in some way because the brain is providing information that the food isn’t as valuable,” Lovinger said.

With the OFC-DS connection identified, the next question was what part of these neurons was responsible for suppressing habits? Some previous work by Lovinger’s colleague and study coauthor Rui Costa, Ph.D., an investigator at the Champalimaud Institute for the Unknown in Lisbon, Portugal, pointed to CB1 as a potential candidate; the CB1 receptor interacts with endocannabinoids, natural messenger molecules in the body that are strikingly similar to THC, the active compound in marijuana.

When mice lacking the CB1 receptor in their OFC neurons were trained, they reduced their lever pressing in both enclosures on devalued days, reflective of a state in which the mice always used goal-directed behaviors because they could not form habits.

Having found CB1 as the receptor that Helps suppress habits, Lovinger said the next step would be to find the agent in the OFC-DS neural circuit that strengthens habits—and that should provide major clues about how drugs of abuse like alcohol and marijuana disrupt the normal process of habituation.

While the NIAAA is more focused on the addiction side, Lovinger thinks the current knowledge gained on weakened habits could be valuable in neuropsychiatry as well.

“It may be a bit of a stretch, but ADHD could be mediated in part by reduced habit-forming potential,” he said. “If someone is trying to pay attention to all potential outcomes in every decision, it could explain the lack of focus displayed by people with ADHD.””

http://psychnews.psychiatryonline.org/doi/full/10.1176/appi.pn.2016.7b25

Cannabis Targets Receptors in the Amygdala Linked to Anxiety

“Marijuana may hijack cannabinoid receptors in the amygdala to reduce anxiety.”

“An international group of researchers led by Vanderbilt University has discovered for the first time that there are cannabinoid receptors in the amygdala. The amygdala is one of the primary brain regions involved in regulating anxiety and the flight-or-fight response.

“The discovery may help explain why marijuana users say they take the drug mainly to reduce anxiety” said Sachin Patel, M.D., Ph.D., the paper’s senior author and professor of Psychiatry and of Molecular Physiology and Biophysics at Vanderbilt. He said, “this could be highly important for understanding how cannabis exerts its behavioral effects.”

The study titled, “Multiple Mechanistically Distinct Modes of Endocannabinoid Mobilization at Central Amygdala Glutamatergic Synapses” is published in the March 2014 issue of the journal Neuron.”

https://www.psychologytoday.com/blog/the-athletes-way/201403/cannabis-targets-receptors-in-the-amygdala-linked-anxiety

New Study Finds Marijuana To Be Effective Against Depression, Migraine and Anxiety

“Research has suggested that cannabis may be a promising treatment option for a number of different physical and mental health conditions, from post-traumatic stress disorder to chronic pain. A study released this week suggests that depression , anxiety and migraine can be added to that list.

Neuroscientists from the University of Buffalo’s Research Institute on Addictions found that endocannabinoids — chemical compounds in the brain that activate the same receptors as THC, an active compound in marijuana — may be helpful in treating depression, anxiety and migraine that results from chronic stress.

In studies on rats, the researchers found that chronic stress reduced the production of endocannabinoids, which affect our cognition, emotion and behavior, and have been linked to reduced feelings of pain and anxiety, increases in appetite and overall feelings of well-being. The body naturally produces these compounds, which are similar to the chemicals in cannabis. Reduction of endocannabinoid production may be one reason that chronic stress is a major risk factor in the development of depression.

Then, the research team administered marijuana cannabinoids to the rats, finding it to be an effective way to restore endocannabinoid levels in their brains — possibly, thereby, alleviating some symptoms of depression.

“Using compounds derived from cannabis — marijuana — to restore normal endocannabinoid function could potentially help stabilize moods and ease depression,” lead researcher Dr. Samir Haj-Dahmane said in a university press release.

Recent research around marijuana’s effect on symptoms of post-traumatic stress disorder further bolsters the Buffalo neuroscientists’ findings, since both disorders involve the way the brain responds to stress. A study published last year in the journal Neuropsychopharmacology, for instance, found synthetic cannabinoids triggered changes in brain centers associated with traumatic memories in rats, preventing some of the behavioral and physiological symptoms of PTSD. Another study published last year found that patients who smoked cannabis experienced a 75 percent reduction in PTSD symptoms.

However, it’s important to note that the relationship between marijuana and depression  is complex. Some research has suggested that regular and heavy marijuana smokers are at a higher risk for depression, although a causal link between cannabis use and depression has not been established. More studies are needed in order to determine whether, and how, marijuana might be used in a clinical context for patients with depression.”  http://painphysicianjournal.co/2016/06/30/new-study-finds-marijuana-to-be-effective-against-depression-migraine-and-anxiety/

New Study Finds Marijuana To Be Effective Against Depression, Migraine and Anxiety

Study reveals central role of endocannabinoids in habit formation

National Institutes of Health (NIH) - Turning Discovery into Health

“Daily activities involve frequent transitions between habitual behaviors, such as driving home, and goal-directed behaviors, such as driving to a new destination on unfamiliar roads. An inability to shift between habitual and non-habitual behaviors has been implicated in obsessive-compulsive disorder (OCD), addiction, and other disorders characterized by impaired decision-making.

In a new study conducted with mice, scientists report that endocannabinoids, natural messengers in the body that are chemically similar to the active compound in marijuana, play an important role in how the brain controls this fundamental process.

The National Institute on Alcohol Abuse and Alcoholism (NIAAA), part of the National Institutes of Health, funded the study.

“The new findings point to a previously unknown mechanism in the brain that regulates the transition between goal-directed and habitual behaviors,” said George F. Koob, Ph.D., NIAAA director. “As we learn more about this mechanism, it could reveal how the brain forms habits and, more specifically, how both endocannabinoids and cannabinoid abuse can influence habitual behavior pathophysiology.” A report of the findings is now online in the journal Neuron.

Previous work in NIAAA’s Laboratory for Integrative Neuroscience suggested that reduced activity in the brain’s orbitofrontal cortex (OFC) underlies habit formation. Endocannabinoids are known to generally reduce the activity of neurons. In the current study, the authors, hypothesized that endocannabinoids in the OFC could be playing a key role in habit formation. The researchers used a newly developed procedure that allowed them to probe the brain mechanisms involved when a mouse shifts from goal-directed to habitual actions. By chemically inhibiting the activity of neurons in the OFC, they disrupted goal-directed behaviors and the mice relied on habitual actions instead. David Lovinger, Ph.D., chief of the NIAAA Laboratory for Integrative Neuroscience, Rui Costa, Ph.D., D.V.M., from the Champalimaud Centre for the Unknown in Lisbon, Portugal, and first author Christina Gremel, Ph.D. from NIAAA and the University of California, San Diego led the research team.

“Mice were trained to receive a food reward in two different ways,” said Dr. Lovinger. “One way required the animal to respond out of habit, while the second way demanded it to perform behaviors that were goal-directed.”

When Dr. Lovinger and his colleagues selectively deleted a particular endocannabinoid receptor, called cannabinoid type 1 (CB1), from OFC neurons, they found that mice that lacked these receptors did not form habits, but used goal-directed responses to receive the food reward. Animals with intact CB1 receptors preferentially used habitual responses to obtain the food reward. The authors say the new study points to a molecular mechanism through which endocannabinoids promote the formation of habits by reducing the flow of information in the OFC.

“Endocannabinoids appear to act as a brake in the OFC, allowing for habit formation,” said Dr. Gremel, an assistant professor of psychology and affiliated with the Neurosciences Graduate program at UCSD. “Our results suggest that alterations in the brain’s endocannabinoid system could be blocking the brain’s capacity to ‘break habits’ as observed in disorders that affect switching between goal-directed and habitual behaviors.”

The authors concluded that their findings demonstrate the existence of parallel brain circuits that mediate goal-directed and habitual behaviors. Drugs of abuse and neuropsychiatric disorders can affect decision-making by changing the balance between habitual and goal-directed actions. In particular, these mechanisms could help explain how cannabis drugs such as marijuana affect memory and decision-making.

The new findings suggest that strategies that target the brain’s endocannabinoid system might restore this balance and alleviate suffering in disorders involving these processes.”

https://www.nih.gov/news-events/news-releases/study-reveals-central-role-endocannabinoids-habit-formation?source=acsh.org

Complex pharmacology of natural cannabinoids: evidence for partial agonist activity of delta9-tetrahydrocannabinol and antagonist activity of cannabidiol on rat brain cannabinoid receptors.

“Delta9-tetrahydrocannabinol (delta9-THC), cannabinol and cannabidiol are three important natural cannabinoids from the Marijuana plant (Cannabis sativa).

Using [35S]GTP-gamma-S binding on rat cerebellar homogenate as an index of cannabinoid receptor activation we show that: delta9-THC does not induce the maximal effect obtained by classical cannabinoid receptor agonists such as CP55940.

Moreover at high concentration delta9-THC exhibits antagonist properties.

Cannabinol is a weak agonist on rat cerebellar cannabinoid receptors and cannabidiol behaves as an antagonist acting in the micromolar range.”

http://www.ncbi.nlm.nih.gov/pubmed/9667767