Dietary ω-3 Polyunsaturated Fatty Acids Inhibit Tumor Growth in Transgenic ApcMin/+ Mice, Correlating with CB1 Receptor Up-Regulation.

Image result for international journal of molecular sciences

“Mediterranean diet components, such as olive oil and ω-3 polyunsaturated fatty acids (ω-3 PUFAs), can arrest cell growth and promote cell apoptosis.

Recently, olive oil has been demonstrated to modulate type-1 cannabinoid (CB1) receptor gene expression in both human colon cancer cells and rat colon. The aim of this study was to investigate a possible link between olive oil and ω-3 PUFAs effects and CB1 receptor expression in both intestinal and adipose tissue of ApcMin/+ mice.

To confirm the role for the CB1 receptor as a negative modulator of cell proliferation in human colon cancer, CB1 receptor gene expression was also detected in tumor tissue and in surrounding normal mucosa of patients with colorectal cancer (CRC).

Dietary ω-3 PUFAs significantly inhibited intestinal polyp growth in mice, correlating with CB1 receptor gene and protein expression induction. CB1 receptor gene up-regulation was also detected in adipose tissue, suggesting a close communication between cancer cells and the surrounding environment. Tissue CB1 receptor induction was associated with a concurrent inactivation of the Wnt/β-catenin pathway.

Moreover, there was a significant reduction in CB1 receptor gene expression levels in cancer tissue compared to normal surrounding mucosa of patients with CRC, confirming that in cancer the “protective” action of the CB1 receptor is lost.”

https://www.ncbi.nlm.nih.gov/pubmed/28245562

Dietary olive oil induces cannabinoid CB2 receptor expression in adipose tissue of ApcMin/+ transgenic mice.

Image result for j nutr health aging journal

“Cannabinoid– 2 (CB2) receptor is known for its anti-obesity effects silencing the activated immune cells that are key drivers of metabolic syndrome and inflammation.

Nutritional interventions in experimental models of carcinogenesis have been demonstrated to modulate tissue inflammation state and proliferation.

OBJECTIVE: Aim of this study was to test, in ApcMin/+ mice, whether a diet enriched with olive oil, omega- 3 and omega-6- PUFAs affects the adipose tissue inflammation status.

RESULTS: The diet enriched with olive oil significantly induced CB2 receptor expression and it was able to control inflammatory and proliferative activity of mice adipose tissue.

CONCLUSIONS: The present findings open opportunities for developing novel nutritional strategies considering olive oil a key ingredient of a healthy dietary pattern.”

Modulation of Long-Term Potentiation of Cortico-Amygdala Synaptic Responses and Auditory Fear Memory by Dietary Polyunsaturated Fatty Acid.

Image result for Front Behav Neurosci

“Converging evidence suggests that an imbalance of ω3 to ω6 polyunsaturated fatty acid (PUFA) in the brain is involved in mental illnesses such as anxiety disorders.

We previously reported that the dietary ratio of ω3 to ω6 PUFA alters this ratio in the brain, and influences contextual fear memory.

In addition to behavioral change, enhancement of cannabinoid CB1 receptor-mediated short-term synaptic plasticity and facilitation of the agonist sensitivity of CB1 receptors have been observed in excitatory synaptic responses in the basolateral nucleus of the amygdala (BLA).

These results suggest that the balance of ω3 to ω6 PUFA has an impact on fear memory and cortico-amygdala synaptic plasticity, both in a CB1 receptor-dependent manner.”

Association between plasma endocannabinoids and appetite in hemodialysis patients: A pilot study.

“Uremia-associated anorexia may be related to altered levels of long chain n-6 and n-3 polyunsaturated fatty acid (PUFA) derived circulating endocannabinoids (EC) and EC-like compounds that are known to mediate appetite. Our study’s hypothesis was that such molecules are associated with appetite in patients with end-stage renal disease. A cross-sectional observational study was performed in 20 chronic hemodialysis patients (9 females, 11 males) and 10 healthy female controls in whom appetite was assessed using the Simplified Nutritional Appetite Questionnaire (SNAQ) and blood drawn in the fasting (and when applicable) pre-dialysis state. Blood levels of PUFA and EC were also measured. Higher blood levels of the long chain n-6 fatty acid 20:4n6 (arachidonic acid) and lower levels of the long chain n-3 fatty acid 20:5n3 (eicosapentaenoic acid) were observed in female hemodialysis patients compared to controls. No differences were observed between male and female patients. In female study participants strong correlations between specific EC-like compounds and total SNAQ scores were noted, including with the n-6 PUFA derived linoleoyl ethanolamide (L-EA; ρ=-0.60, P<.01) and the n-3 PUFA derived docosahexaenoyl ethanolamide (DH-EA; ρ=0.63, P<.01). The L-EA:DH-EA ratio was most strongly associated with the SNAQ score (ρ=-0.74, P≤.001), and its questions associated with appetite (ρ=-0.69, P≤.01) and satiety (ρ=-0.81, P≤.001). These findings support a link between circulating EC and appetite in hemodialysis patients.”

http://www.ncbi.nlm.nih.gov/pubmed/27333956

Nutritional n-3 PUFA Deficiency Abolishes Endocannabinoid Gating of Hippocampal Long-Term Potentiation.

“Maternal n-3 polyunsaturated fatty acids (PUFAs), especially docosahexaenoic acid, is critical during perinatal brain development. How early postnatal n-3 PUFA deficiency impacts on hippocampal synaptic plasticity is mostly unknown. Here we compared activity-dependent plasticity at excitatory and inhibitory synapses in the CA1 region of the hippocampus in weaned pups whose mothers were fed with an n-3 PUFA-balanced or n-3 PUFA-deficient diet. Normally, endogenous cannabinoids (eCB) produced by the post-synapse dually control network activity by mediating the long-term depression of inhibitory inputs (iLTD) and positively gating NMDAR-dependent long-term potentiation (LTP) of excitatory inputs. We found that both iLTD and LTP were impaired in n-3 PUFA-deficient mice. Pharmacological dissection of the underlying mechanism revealed that impairment of NMDAR-dependent LTP was causally linked to and attributable to the ablation of eCB-mediated iLTD and associated to disinhibitory gating of excitatory synapses. The data shed new light on how n-3 PUFAs shape synaptic activity in the hippocampus and provide a new synaptic substrate to the cognitive impairments associated with perinatal n-3 deficiency.”

http://www.ncbi.nlm.nih.gov/pubmed/26946127

Hempseed as a nutritional resource: An overview

“The seed of Cannabis sativa L. has been an important source of nutrition for thousands of years in Old World cultures. Technically a nut, hempseed typically contains over 30% oil and about 25% protein, with considerable amounts of dietary fiber, vitamins and minerals. Hempseed oil is over 80% in polyunsaturated fatty acids (PUFAs), and is an exceptionally rich source of the two essential fatty acids (EFAs) linoleic acid (18:2 omega-6) and alpha-linolenic acid (18:3 omega-3). The omega-6 to omega-3 ratio (n6/n3) in hempseed oil is normally between 2:1 and 3:1, which is considered to be optimal for human health. Hempseed has been used to treat various disorders for thousands of years in traditional oriental medicine.” http://link.springer.com/article/10.1007%2Fs10681-004-4811-6

Effect of dietary hempseed intake on cardiac ischemia-reperfusion injury.

Regulatory, Integrative and Comparative Physiology

“Polyunsaturated fatty acids (PUFAs) have significant, cardioprotective effects against ischemia.

Hempseed contains a high proportion of the PUFAs linoleic acid (LA) and alpha-linolenic acid (ALA),

Hearts from rats fed a hempseed-supplemented diet exhibited significantly better postischemic recovery of maximal contractile function and enhanced rates of tension development and relaxation during reperfusion than hearts from the other groups.

Our data demonstrate that dietary hempseed can provide significant cardioprotective effects during postischemic reperfusion. This appears to be due to its highly enriched PUFA content.”  http://www.ncbi.nlm.nih.gov/pubmed/17122327

“Polyunsaturated fatty acids (PUFAs) have received special research attention because of their antiarrhythmic and cardioprotective effects in hearts challenged by an ischemia-reperfusion insult. There are two major types of PUFAs: omega-3 and omega-6. Linoleic acid (LA) and α-linolenic acid (ALA) are common examples of an omega-6 and an omega-3 fatty acid, respectively… We have demonstrated for the first time in this study that dietary hempseed represents an effective, unique method to significantly alter the levels of ALA in the heart. We have also demonstrated for the first time that dietary hempseed will confer beneficial cardioprotective effects in hearts subjected to ischemia-reperfusion challenge.”  http://ajpregu.physiology.org/content/292/3/R1198

Modulation of Fear Memory by Dietary Polyunsaturated Fatty Acids via Cannabinoid Receptors.

“…several studies have suggested benefits of n-3 long-chain polyunsaturated fatty acid (PUFA) for patients with anxiety disorders.

Elevated fear is thought to contribute to the pathogenesis of particular anxiety disorders. The aim of the present study was to evaluate whether the dietary n-3 to n-6 PUFA (3/6) ratio influences fear memory…

These results suggest that the ratio of n-3 to n-6 PUFA is a factor regulating fear memory via cannabinoid CB1 receptors.”

http://www.ncbi.nlm.nih.gov/pubmed/24518289

Nutritional n-3 polyunsaturated fatty acids deficiency alters cannabinoid receptor signaling pathway in the brain and associated anxiety-like behavior in mice.

“N-3 polyunsaturated fatty acids (PUFAs) cannot be synthesized de novo in mammals and need to be provided by dietary means. In the brain, the main n-3 PUFA is docosahexaenoic acid (DHA), which is a key component of neuronal membranes. A low dietary level of DHA has been associated with increased risk of developing neuropsychiatric diseases; however, the mechanisms involved remain to be determined.

In this study, we found that long-term exposure to an n-3 deficient diet decreases the level of DHA in the brain and impairs the cannabinoid receptor signaling pathway in mood-controlling structures.

In n-3 deficient mice, the effect of the cannabinoid agonist WIN55,212-2 in an anxiety-like behavior test was abolished. In addition, the cannabinoid receptor signaling pathways were altered in the prefrontal cortex and the hypothalamus.

Consequently, our data suggest that behavioral changes linked to an n-3 dietary deficiency are due to an alteration in the endocannabinoid system in specific brain areas.”

http://www.ncbi.nlm.nih.gov/pubmed/22707188

[Essential fatty acids and lipid mediators. Endocannabinoids].

“Balance between omega-3 and omega-6 acids has a profound influence on all the body’s inflammatory responses and a raised level of PUFA omega-3 in tissue correlate with a reduced incidence of degenerative cardiovascular disease, some mental illnesses such as depression, and neuro-degenerative diseases such as Alzheimer’s.

Recent advances in the biochemistry and pharmacology of the endocannabinoid system…

will offer the development of novel therapeutic agents.”

http://www.ncbi.nlm.nih.gov/pubmed/22730630