Cannabis and Δ9-tetrahydrocannabinol (THC) for weight loss?

“Obesity is one of the highest preventable causes of morbidity and mortality in the developed world. It has been well known for a long time that exposure to cannabis produces an increase of appetite (a phenomenon referred to as the ‘munchies’). This phenomenon led to an exploration of the role of the endocannabinoid system in the regulation of obesity and associated metabolic syndrome.

This effort subsequently led to the development of a successful therapeutic approach for obesity that consisted of blocking the cannabinoid CB1 receptors using ligands such as Rimonabant in order to produce weight loss and improve metabolic profile. Despite being efficacious, Rimonabant was associated with increased rates of depression and anxiety and therefore removed from the market.

We recently discovered that the prevalence of obesity is paradoxically much lower in cannabis users as compared to non-users and that this difference is not accounted for by tobacco smoking status and is still present after adjusting for variables such as sex and age.

Here, we propose that this effect is directly related to exposure to the Δ(9)-tetrahydrocannabinol (THC) present in cannabis smoke.

We therefore propose the seemingly paradoxical hypothesis that THC or a THC/cannabidiol combination drug may produce weight loss and may be a useful therapeutic for the treatment of obesity and its complications.”

http://www.ncbi.nlm.nih.gov/pubmed/23410498

Amphiregulin is a factor for resistance of glioma cells to cannabinoid-induced apoptosis.

“Gliomas, one of the most malignant forms of cancer, exhibit high resistance to conventional therapies. Identification of the molecular mechanisms responsible for this resistance is therefore of great interest to improve the efficacy of the treatments against these tumors. Delta9-Tetrahydrocannabinol (THC), the major active ingredient of marijuana, and other cannabinoids inhibit tumor growth in animal models of cancer, including glioma, an effect that relies, at least in part, on the ability of these compounds to induce apoptosis of tumor cells.

…we identified the epidermal growth factor receptor ligand amphiregulin as a candidate factor to mediate the resistance of glioma cells to cannabinoid treatment… in vivo silencing of amphiregulin rendered the resistant tumors xenografts sensitive to cannabinoid antitumoral action.

Amphiregulin expression was associated with increased extracellular signal-regulated kinase (ERK) activation, which mediated the resistance to THC by blunting the expression of p8 and TRB3-two genes involved in cannabinoid-induced apoptosis of glioma cells.

 Our findings therefore identify Amphirregulin as a factor for resistance of glioma cells to THC-induced apoptosis and contribute to unraveling the molecular bases underlying the emerging notion that targeted inhibition of the EGFR pathway can improve the efficacy of antitumoral therapies.”

http://www.ncbi.nlm.nih.gov/pubmed/19229996

Stimulation of the midkine/ALK axis renders glioma cells resistant to cannabinoid antitumoral action

“Δ9-Tetrahydrocannabinol (THC), the major active ingredient of marijuana, and other cannabinoids inhibit tumor growth in animal models of cancer, including glioma, an effect that relies, at least in part, on the stimulation of autophagy-mediated apoptosis in tumor cells. 

…Altogether, our findings identify Mdk as a pivotal factor involved in the resistance of glioma cells to THC pro-autophagic and antitumoral action, and suggest that selective targeting of the Mdk/ALK axis could help to improve the efficacy of antitumoral therapies for gliomas.”

Full text: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3131933/

Stimulation of ALK by the growth factor midkine renders glioma cells resistant to autophagy-mediated cell death

“Δ9-tetrahydrocannabinol (THC), the main active component of marijuana, promotes cancer cell death via autophagy stimulation.

We find that activation of the tyrosine kinase receptor ALK by its ligand midkine interferes with the signaling mechanism by which THC promotes autophagy-mediated glioma cell death.”

 http://www.ncbi.nlm.nih.gov/pubmed/21593591

Marijuana Chemical May Fight Brain Cancer – CBSNews

“The active chemical in marijuana promotes the death of brain cancer cells by essentially helping them feed upon themselves, researchers in Spain report.

Guillermo Velasco and colleagues at Complutense University in Spain have found that the active ingredient in marijuana, THC, causes brain cancer cells to undergo a process called autophagy. Autophagy is the breakdown of a cell that occurs when the cell essentially self-digests.

The team discovered that cannabinoids such as THC had anticancer effects in mice with human brain cancer cells and people with brain tumors . When mice with the human brain cancer cells received the THC, the tumor growth shrank.

Two patients enrolled in a clinical trial received THC directly to the brain as an experimental treatment for recurrent glioblastoma multiforme , a highly aggressive brain tumor. Biopsies taken before and after treatment helped track their progress. After receiving the THC, there was evidence of increased autophagy activity.

The findings appear in the April 1 issue of the Journal of Clinical Investigation.

The patients did not have any toxic effects from the treatment. Previous studies of THC for the treatment of cancer have also found the therapy to be well tolerated, according to background information in journal article.

Study authors say their findings could lead to new strategies for preventing tumor growth.”

http://www.cbsnews.com/2100-500368_162-4913095.html

“Cannabinoid action induces autophagy-mediated cell death through stimulation of ER stress in human glioma cells…These findings describe a mechanism by which THC can promote the autophagic death of human and mouse cancer cells and provide evidence that cannabinoid administration may be an effective therapeutic strategy for targeting human cancers.” http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2673842/

 

Biochemical and immunohistochemical changes in delta-9-tetrahydrocannabinol-treated type 2 diabetic rats.

“The regulation of glucose, lipid metabolism and immunoreactivities of insulin and glucagon peptides by delta-9-tetrahydrocannabinol (Δ9-THC) in diabetes were examined in an experimental rat model… 

These results indicate that Δ9-THC may serve a protective role against hyperlipidemia and hyperglycemia in diabetic rats.”

http://www.ncbi.nlm.nih.gov/pubmed/23845579

Researchers Have Discovered Synthetic Agents Used To Treat HIV Inflammation – Medical News Today

“HIV can cause serious inflammation, regardless of drug therapy, as it develops slowly in immune cells called macrophages. However, new research conducted at the Temple University School of Medicine’s Department of Pathology and Laboratory Medicine and Center for Substance Abuse Research (CSAR) has just found that there are synthetic agents with anti-inflammatory properties, related to the active ingredient in cannabis, THC (tetrahydrocannabinol) which could limit and treat the chronic inflammation.

These findings suggest that CB2 agonists could be used along with antiretroviral drugs which could lead to a new form of therapy for HIV/AIDS.

It also suggests that the human immune system itself could be used to fight off the HIV infection.

According to Persidsky: “Our study suggests that the body’s own natural defenses can be made more powerful to fight some of the worst symptoms of HIV.”

Stimulating CB2 receptors could also be applied for treating other infections.”

More: http://www.medicalnewstoday.com/articles/260152.php

TEMPLE SCIENTISTS WEAKEN HIV INFECTION IN IMMUNE CELLS USING SYNTHETIC AGENTS RELATED TO ACTIVE INGREDIENT IN MARIJUANA

“HIV, the virus that causes AIDS, is notorious for hiding within certain types of cells, where it reproduces at a slowed rate and eventually gives rise to chronic inflammation, despite drug therapy. But researchers at Temple University School of Medicine’s Department of Pathology and Laboratory Medicine and Center for Substance Abuse Research (CSAR) recently discovered that synthetic anti-inflammatory substances distantly related to the active ingredient of marijuana may be able to take the punch out of HIV while inside one of its major hideouts – immune cells known as macrophages. 

The breakthrough comes at a crucial time in the HIV/AIDS pandemic…

To better understand the connection between inflammation and neurocognitive conditions linked to long-term exposure to HIV, Ramirez and colleagues looked specifically at the CB2 receptor, a protein located on the surface of macrophages. CB2 is a binding site for substances called cannabinoids, the primary active compounds of cannabis (marijuana), and it may play a role in blocking inflammation in the CNS. Unlike its counterpart, the CB1 receptor, which is found primarily on neurons in the brain, CB2 does not mediate the psychoactive effects for which cannabis is popularly known.

Ramirez explained that there has been much pharmacological interest in developing agents that selectively target CB2. Ideally, these compounds would help limit chronic inflammatory responses and would not bind to CB1. The most promising compounds are those derived from THC (tetrahydrocannabinol), the main active substance in cannabis. 

The scientists landed on their discovery by conducting a series of experiments in a well-established, non-clinical HIV macrophage cell model. They began by treating the HIV-infected cells with one of three different synthetic CB2-activating compounds. The cells were then sampled periodically to measure the activity of an enzyme called reverse transcriptase, which is essential for HIV replication. After seven days, the team found that all three compounds had successfully attenuated HIV replication. The experiments and findings are detailed in the May issue of the Journal of Leukocyte Biology. 

The results suggest that selective CB2 agonists could potentially be used in tandem with existing antiretroviral drugs, opening the door to the generation of new drug therapies for HIV/AIDS. The data also support the idea that the human immune system could be leveraged to fight HIV infection. 

“Our study suggests that the body’s own natural defenses can be made more powerful to fight some of the worst symptoms of HIV,” Persidsky explained. He also noted that stimulating CB2 receptors in white blood cells could produce similar benefits against other viral infections.”

More: http://www.temple.edu/medicine/hiv_immune_cells.htm

Antibacterial activity of delta9-tetrahydrocannabinol and cannabidiol.

Image result for Antonie Van Leeuwenhoek. journal

“The minimum inhibiting concentrations (MIC) of delta9-tetrahydrocannabinol (THC) and cannabidiol (CBD) for staphylococci and streptococci in broth are in the range of 1-5 mug/ml.

In the same range, both compounds are also bactericidal.

In media containing 4% serum or 5% blood the antibacterial activity is strongly reduced (MIC 50 mug/ml). Gram-negative bacteria are resistant to THC and CBD.”

http://www.ncbi.nlm.nih.gov/pubmed/1085130

Large Study Finds No Link between Marijuana and Lung Cancer – Scientific American

“…Scientists were therefore surprised to learn that a study of more than 2,000 people found no increase in the risk of developing lung cancer for marijuana smokers.

“We expected that we would find that a history of heavy marijuana use–more than 500 to 1,000 uses–would increase the risk of cancer from several years to decades after exposure to marijuana,” explains physician Donald Tashkin of the University of California, Los Angeles, and lead researcher on the project. But looking at residents of Los Angeles County, the scientists found that even those who smoked more than 20,000 joints in their life did not have an increased risk of lung cancer.

The study does not reveal how marijuana avoids causing cancer. Tashkin speculates that perhaps the THC chemical in marijuana smoke prompts aging cells to die before becoming cancerous. Tashkin and his colleagues presented the findings yesterday at a meeting of the American Thoracic Society in San Diego.”

More: http://www.scientificamerican.com/article.cfm?id=large-study-finds-no-link